Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Adv Mater ; : e2404232, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934440

ABSTRACT

Pairing the positive and negative electrodes with their individual dynamic characteristics at a realistic cell level is essential to the practical optimal design of electrochemical energy storage devices (EESDs). However, the complex relationship between the performance data measured for individual electrodes and the two-electrode cells used in practice often makes an optimal pairing experimentally challenging. Taking advantage of our developed tunable graphene-based electrodes with controllable structure, we successfully unite experiments with machine learning to generate a large pool of capacitance data for graphene-based electrode materials with varied slit pore sizes, thicknesses, and charging rates and numerically pair them into different combinations for two-electrode cells. The results show that the optimal pairing parameters of positive and negative electrodes vary considerably with the operation rate of the cells and are even influenced by the thickness of inactive components. The best-performing individual electrode does not necessarily result in optimal cell-level performance. The machine learning-assisted pairing approach presents much higher efficiency compared with the traditional trial-and-error approach for the optimal design of supercapacitors. The results observed in this work also indicate the call for comprehensive performance data reporting in the electrochemical energy storage field to enable the adoption of artificial intelligence techniques to efficiently translate well-developed high-performance individual electrode materials into real energy storage devices. This article is protected by copyright. All rights reserved.

2.
mSystems ; : e0026224, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904378

ABSTRACT

Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE: K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.

3.
Article in English | MEDLINE | ID: mdl-38735893

ABSTRACT

PURPOSE: Preoperative planning of maxillary anterior dental implant is a prerequisite to ensuring that the implant achieves the proper three-dimensional (3D) pose, which is essential for its long-term stability. However, the current planning process is labor-intensive and subjective, relying heavily on the surgeon's experience. Consequently, this paper proposes an automatic method for computing the optimal pose of the dental implant. METHODS: The method adopts the principle of prosthetically guided dental implant placement. Initially, the prosthesis coordinate system is established to determine the implant candidate orientations. Subsequently, virtual slices of the maxilla in the buccal-palatal direction are generated according to the prosthesis position. By extracting feature points from the virtual slices, the implant candidate starting points are acquired. Then, a candidate pose set is obtained by combining these candidate starting points and orientations. Finally, a pose evaluation indicator is introduced to determine the optimal implant pose from this set. RESULTS: Twenty-two cases were utilized to validate the method. The results show that the method could determine an ideal pose for the dental implant, with the average minimum distance between the implant and the left tooth root, the right tooth root, the palatal side, and the buccal side being 2.57 ± 0.53 mm, 2.59 ± 0.65 mm, 0.74 ± 0.19 mm, 1.83 ± 0.16 mm, respectively. The planning time was less than 9 s. CONCLUSION: Unlike manual planning, the proposed method can efficiently and accurately complete maxillary anterior dental implant planning, providing a theoretical analysis of the success rate of the implant. Thus, it has great potential for future clinical application.

4.
Biomed Chromatogr ; 38(7): e5872, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38638009

ABSTRACT

Modern studies have shown that neuroendocrine disorders caused by the dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis are one of the important pathogenetic mechanisms of kidney-yang-deficiency-syndrome (KYDS). The preventive effect of Gushudan on KYDS has been reported, but its regulatory mechanisms on the HPG axis have not been elucidated. In this study, we developed an integrated untargeted and targeted metabolomics analysis strategy to investigate the regulatory mechanism of Gushudan on the HPG axis in rats with KYDS. In untargeted metabolomics, we screened 14 potential biomarkers such as glycine, lysine, and glycerol that were significantly associated with the HPG axis. To explore the effect of changes in the levels of potential biomarkers on KYDS, all of them were quantified in targeted metabolomics. With the quantitative results, correlations between potential biomarkers and testosterone, a functional indicator of the HPG axis, were explored. The results showed that oxidative stress, inflammatory response, and energy depletion, induced by metabolic disorders in rats, were responsible for the decrease in testosterone levels. Gushudan improves metabolic disorders and restores testosterone levels, thus restoring HPG axis dysfunction. This finding elucidates the special metabolic characteristics of KYDS and the therapeutic mechanism of Gushudan from a new perspective.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Testis , Yang Deficiency , Animals , Male , Rats , Metabolomics/methods , Yang Deficiency/metabolism , Testis/metabolism , Testis/drug effects , Drugs, Chinese Herbal/pharmacology , Rats, Sprague-Dawley , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Testosterone/metabolism , Metabolome/drug effects , Metabolome/physiology , Biomarkers/metabolism , Biomarkers/analysis , Kidney Diseases/metabolism , Kidney/metabolism , Hypothalamic-Pituitary-Gonadal Axis
5.
Adv Mater ; : e2400937, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634714

ABSTRACT

Alkali metal-air batteries (AMABs) promise ultrahigh gravimetric energy densities, while the inherent poor cycle stability hinders their practical application. To address this challenge, most previous efforts are devoted to advancing the air cathodes with high electrocatalytic activity. Recent studies have underlined the solid-liquid-gas triple-phase interface around the anode can play far more significant roles than previously acknowledged by the scientific community. Besides the bottlenecks of uncontrollable dendrite growth and gas evolution in conventional alkali metal batteries, the corrosive gases, intermediate oxygen species, and redox mediators in AMABs cause more severe anode corrosion and structural collapse, posing greater challenges to the stabilization of the anode triple-phase interface. This work aims to provide a timely perspective on the anode interface engineering for durable AMABs. Taking the Li-air battery as a typical example, this critical review shows the latest developed anode stabilization strategies, including formulating electrolytes to build protective interphases, fabricating advanced anodes to improve their anti-corrosion capability, and designing functional separator to shield the corrosive species. Finally, the remaining scientific and technical issues from the prospects of anode interface engineering are highlighted, particularly materials system engineering, for the practical use of AMABs.

6.
Anal Chem ; 96(17): 6575-6583, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38637908

ABSTRACT

Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 µmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.


Subject(s)
Fatty Acids, Volatile , Metabolomics , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Metabolomics/methods , Rats , Metal-Organic Frameworks/chemistry , Rats, Sprague-Dawley , Male , Boronic Acids/chemistry
7.
Sci Adv ; 10(17): eadn7582, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657056

ABSTRACT

With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.

8.
iScience ; 27(2): 108973, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327791

ABSTRACT

Electrified converting CO2 into valuable fuels and chemicals using a homogeneous electrochemical CO2 reduction (CO2ER) approach simplifies the operation, providing a potential option for decoupling energy harvesting and renewable chemical production. These merits benefit the scenarios where decentralization and intermittent power are key factors. This perspective aims to provide an overview of recent progress in homogeneous CO2ER. We introduce firstly the fundamentals chemistry of the homogeneous CO2ER, followed by a summary of the crucial factors and the important criteria broadly employed for evaluating the performance. We then highlight the recent advances in the most widely explored transition-metal coordinate complexes for the C1 and multicarbon (C2+) products from homogeneous CO2ER. Finally, we summarize the remaining challenges and opportunities for developing homogeneous electrocatalysts for efficient CO2ER. This perspective is expected to favor the rational design of efficient homogeneous electrocatalysts for selective CO2ER toward renewable fuels and feedstocks.

9.
Chin Herb Med ; 16(1): 106-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38375049

ABSTRACT

Objective: Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from Pulsatilla chinensis, inhibited influenza virus FM1 or Klebsiella pneumoniae-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 in vivo and in vitro. Methods: The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for in vitro assays. The antiviral effect of AB4 in vivo was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining. Results: The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. In vivo antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-ß response via the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism. Conclusion: Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.

10.
Adv Mater ; 36(17): e2312161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191004

ABSTRACT

The reversible and durable operation of sodium metal batteries at low temperatures (LT) is essential for cold-climate applications but is plagued by dendritic Na plating and unstable solid-electrolyte interphase (SEI). Current Coulombic efficiencies of sodium plating/stripping at LT fall far below 99.9%, representing a significant performance gap yet to be filled. Here, the solvation structure of the conventional 1 m NaPF6 in diglyme electrolyte by facile cyclic ether (1,3-dioxolane, DOL) dilution is efficiently reconfigured. DOL diluents help shield the Na+-PF6 - Coulombic interaction and intermolecular forces of diglyme, leading to anomalously high Na+-ion conductivity. Besides, DOL participates in the solvation sheath and weakens the chelation of Na+ by diglyme for facilitated desolvation. More importantly, it promotes concentrated electron cloud distribution around PF6 - in the solvates and promotes their preferential decomposition. A desired inorganic-rich SEI is generated with compositional uniformity, high ionic conductivity, and high Young's modulus. Consequently, a record-high Coulombic efficiency over 99.9% is achieved at an ultralow temperature of -55 °C, and a 1 Ah capacity pouch cell of initial anode-free sodium metal battery retains 95% of the first discharge capacity over 100 cycles at -25 °C. This study thus provides new insights for formulating electrolytes toward increased Na reversibility at LT.

11.
Small ; 20(3): e2305171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705130

ABSTRACT

The nano-kirigami metasurfaces have controllable 3D geometric parameters and dynamic transformation functions and therefore provide a strong spectral regulation capability of thermal emission. Here, the authors propose and demonstrate a dynamic and multifunctional thermal emitter based on deformable nano-kirigami structures, which can be actuated by electronic bias or mechanical compression. Selective emittance and the variation of radiation intensity/wavelength are achieved by adjusting the geometric shape and the transformation of the structures. Particularly, a thermal management device based on a composite structure of nano-kirigami and polydimethylsiloxane (PDMS) thin film is developed, which can dynamically switch the state of cooling and heating by simply pressing the device. The proposed thermal emitter designs with strong regulation capability and multiple dynamic adjustment strategies are desirable for energy and sensing applications and inspire further development of infrared emitters.

12.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38157008

ABSTRACT

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Subject(s)
Colitis , Saponins , Rats , Mice , Animals , Pyruvate Carboxylase/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Saponins/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Macrophages/metabolism , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Mice, Inbred C57BL , Disease Models, Animal
13.
Aging Cell ; 22(12): e14028, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38015106

ABSTRACT

Human aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging.


Subject(s)
Gastrointestinal Microbiome , Humans , Aged , China , Metabolome , Aging , Biomarkers , Kidney
14.
Chem Commun (Camb) ; 59(89): 13363-13366, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37874171

ABSTRACT

Trace Sc3+ additive (1.0 mol%) is shown to greatly improve the Coulombic efficiency and cycling stability of Zn metal anodes in aqueous ZnSO4 electrolyte due to the decreased nucleation overpotential and increased kinetics for Zn plating/stripping. Both Zn‖Zn and Zn‖V2O5 cells show enhanced cycling stability and rate capability in the Sc3+-modified electrolyte.

15.
Langmuir ; 39(43): 15260-15267, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37851543

ABSTRACT

Solvent is involved in many wet-chemical synthesis and bottom-up assembly processes. Understanding its influence on the nanotextural formation of the resultant assemblies is essential for the design and control of the properties for targeted applications. With wet chemically reduced graphene oxide (rGO) membranes as a materials platform, this study investigates the solvent effect on nanotexture formation in 2D nanomaterial-based membranes through light scattering and electrochemical characterization. Our finding indicates that the nanotexture of the resultant rGO membrane is largely correlated to the dielectric constant of the solvent. Specifically, solvents with higher dielectric constants yield rGO membranes with more wrinkled, loosely stacked, and less graphitized structures. In contrast, solvents with a lower dielectric constant tend to yield densely stacked structures with larger graphitized domains. Our finding underscores the important role of solvents in wet processing and nanoengineering of 2D nanomaterial-based membranes and provides valuable insights for their controlled synthesis and application.

16.
Nano Lett ; 23(12): 5555-5561, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37315026

ABSTRACT

Ion adsorption within nanopores is involved in numerous applications. However, a comprehensive understanding of the fundamental relationship between in-pore ion concentration and pore size, particularly in the sub-2 nm range, is scarce. This study investigates the ion-species-dependent concentration in multilayered graphene membranes (MGMs) with tunable nanoslit sizes (0.5-1.6 nm) using nuclear magnetic resonance and computational simulations. For Na+-based electrolytes in MGMs, the concentration of anions in graphene nanoslits increases in correlation with their chaotropic properties. As the nanoslit size decreases, the concentration of chaotropic ion (BF4-) increases, whereas the concentration of kosmotropic ions (Cit3-, PO43-) and other ions (Ac-, F-) decreases or changes slightly. Notably, anions remain more concentrated than counter Na+ ions, leading to electroneutrality breakdown and unipolar anion packing in MGMs. A continuum modeling approach, integrating molecular dynamic simulation with the Poisson-Boltzmann model, elucidates these observations by considering water-mediated ion-graphene non-electrostatic interactions and charge screening from graphene walls.

17.
Research (Wash D C) ; 6: 0157, 2023.
Article in English | MEDLINE | ID: mdl-37292515

ABSTRACT

Flexible full-textile pressure sensor is able to integrate with clothing directly, which has drawn extensive attention from scholars recently. But the realization of flexible full-textile pressure sensor with high sensitivity, wide detection range, and long working life remains challenge. Complex recognition tasks necessitate intricate sensor arrays that require extensive data processing and are susceptible to damage. The human skin is capable of interpreting tactile signals, such as sliding, by encoding pressure changes and performing complex perceptual tasks. Inspired by the skin, we have developed a simple dip-and-dry approach to fabricate a full-textile pressure sensor with signal transmission layers, protective layers, and sensing layers. The sensor achieves high sensitivity (2.16 kPa-1), ultrawide detection range (0 to 155.485 kPa), impressive mechanical stability of 1 million loading/unloading cycles without fatigue, and low material cost. The signal transmission layers that collect local signals enable real-world complicated task recognition through one single sensor. We developed an artificial Internet of Things system utilizing a single sensor, which successfully achieved high accuracy in 4 tasks, including handwriting digit recognition and human activity recognition. The results demonstrate that skin-inspired full-textile sensor paves a promising route toward the development of electronic textiles with important potential in real-world applications, including human-machine interaction and human activity detection.

18.
Small ; 19(39): e2302097, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37226377

ABSTRACT

Na3 V2 (PO4 )2 O2 F (NVPOF) is widely accepted as advanced cathode material for sodium-ion batteries with high application prospects ascribing to its considerable specific capacity and high working voltage. However, challenges in the full realization of its theoretical potential lie in the novel structural design to accelerate its Na+ diffusivity. Herein, considering the important role of polyanion groups in constituting Na+ diffusion tunnels, boron (B) is doped at the P-site to obtain Na3 V2 (P2- x Bx O8 )O2 F (NVP2- x Bx OF). As evidenced by density functional theory modeling, B-doping induces a dramatic decrease in the bandgap. Delocalization of electrons on the O anions in BO4 tetrahedra is observed in NVP2- x Bx OF, which dramatically lowers the electrostatic resistance experienced by Na+ . As a result, the Na+ diffusivity in the NVP2- x Bx OF cathode has accelerated up to 11 times higher, which secures a high rate property (67.2 mAh g-1 at 60 C) and long cycle stability (95.9% capacity retention at 108.6 mAh g-1 at 10 C after 1000 cycles). The assembled NVP1.90 B0.10 OF//Se-C full cell demonstrates exceptional power/energy density (213.3 W kg-1 @ 426.4 Wh kg-1 and 17970 W kg-1 @ 119.8 Wh kg-1 ) and outstanding capability to withstand long cycles (90.1% capacity retention after 1000 cycles at 105.3 mAh g-1 at 10 C).

19.
Sci Rep ; 13(1): 7454, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156806

ABSTRACT

Nano-kirigami metasurfaces have attracted increasing attention due to their ease of three-dimension (3D) nanofabrication, versatile shape transformations, appealing manipulation capabilities and rich potential applications in nanophotonic devices. Through adding an out-of-plane degree of freedom to the double split-ring resonators (DSRR) by using nano-kirigami method, in this work we demonstrate the broadband and high-efficiency linear polarization conversion in the near-infrared wavelength band. Specifically, when the two-dimensional DSRR precursors are transformed into 3D counterparts, a polarization conversion ratio (PCR) of more than 90% is realized in wide spectral range from 1160 to 2030 nm. Furthermore, we demonstrate that the high-performance and broadband PCR can be readily tailored by deliberately deforming the vertical displacement or adjusting the structural parameters. Finally, as a proof-of-concept demonstration, the proposal is successfully verified by adopting the nano-kirigami fabrication method. The studied nano-kirigami based polymorphic DSRR mimic a sequence of discrete bulk optical components with multifunction, thereby eliminating the need for their mutual alignment and opening new possibilities.

20.
Chemosphere ; 326: 138326, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36907484

ABSTRACT

Social development is accompanied by technological progress, which commonly leads to the expansion of pollution As an essential resource of modern medical treatment, antibiotics have become a hot topic in the aspect of environmental pollution. In this study, we first used fish scales to synthesize N, P-codoped biochar catalyst (FS-BC) as peroxymonosulfate (PMS) and peroxydisulfate (PDS) activator to degrade tetracycline hydrochloride (TC). At the same time, peanut shell biochar (PS-BC) and coffee ground biochar (CG-BC) were prepared as reference materials. Among them, FS-BC exhibited the best catalytic performance due to the excellent defect structure (ID/IG = 1.225) and the synergism of N, P heteroatoms. PS-BC, FS-BC and CG-BC achieved degradation efficiencies of 86.26%, 99.71% and 84.41% for TC during PMS activation and 56.79%, 93.99% and 49.12% during PDS, respectively. In both FS-BC/PMS and FS-BC/PDS systems, non-free radical pathways involved singlet oxygen (1O2), surface-bound radicals mechanism and direct electron transfer mechanism. Structural defects, graphitic N and pyridinic N, P-C groups and positively charged sp2 hybridized C adjacent to graphitic N were all critical active sites. FS-BC has the potential for practical applications and development because of its robust adaptation to pH and anions and stable re-usability. This study not only provides a reference for biochar selection, but also suggests a superior strategy for TC degradation in the environment.


Subject(s)
Anti-Bacterial Agents , Charcoal , Charcoal/chemistry , Peroxides/chemistry , Arachis
SELECTION OF CITATIONS
SEARCH DETAIL
...