Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(8): 086902, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457719

ABSTRACT

We have measured the flexophotovoltaic effect of single crystals of halide perovskites MAPbBr_{3} and MAPbI_{3}, as well as the benchmark oxide perovskite SrTiO_{3}. For halide perovskites, the flexophotovoltaic effect is found to be orders of magnitude larger than for SrTiO_{3}, and indeed large enough to induce photovoltages bigger than the band gap. Moreover, we find that in MAPbI_{3} the flexophotovoltaic effect is additional to a native bulk photovoltaic response that is switchable and ferroelectric-like. The results suggest that strain gradient engineering can be a powerful tool to modify the photovoltaic output even in already well-established photovoltaic materials.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38334547

ABSTRACT

Defect engineering constitutes a widely-employed method of adjusting the electronic structure and properties of oxide materials. However, controlling defects at room temperature remains a significant challenge due to the considerable thermal stability of oxide materials. In this work, a facile room-temperature lithium reduction strategy is utilized to implant oxide defects into perovskite BaTiO3 (BTO) nanoparticles to enhance piezocatalytic properties. As a potential application, the piezocatalytic performance of defective BTO is examined. The reaction rate constant increases up to 0.1721 min-1, representing an approximate fourfold enhancement over pristine BTO. The effect of oxygen vacancies on piezocatalytic performance is discussed in detail. This work gives us a deeper understanding of vibration catalysis and provides a promising strategy for designing efficient multi-field catalytic systems in the future.

3.
ACS Appl Mater Interfaces ; 15(29): 35170-35177, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37436879

ABSTRACT

The advantages of van der Waals epitaxy have attracted great interest because they can meet the requirements that conventional epitaxy struggles to satisfy. The weak adatom-substrate interaction without directional covalent bonding drastically relaxes the lattice matching limitation. However, the weak adatom-substrate interaction also leads to ineffectiveness in directing the crystal growth structure, limiting it to one orientation in epitaxial growth. In this work, we propose a domain matching strategy to guide the perovskite-type crystal epitaxial growth on 2D substrates, and we have demonstrated selective deposition of highly (001)-, (110)-, and (111)-oriented epitaxial Fe4N thin films on mica substrates using applicable transition structure design. Our work makes it possible to achieve and control different orientations of van der Waals epitaxy on the same substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...