Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826377

ABSTRACT

Coronaviruses recognize a wide array of protein and glycan receptors using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal (S1-NTD) and C-terminal (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possess an evolutionarily conserved glycan binding cleft that facilitates weak interactions with sialic acids on cell surfaces. HCoV-HKU1 employs 9-O-acetylated α2-8-linked disialylated structures for initial binding, followed by TMPRSS2 receptor binding and virus-cell fusion. Here, we demonstrate that HCoV-HKU1 NTD has a broader receptor binding repertoire than previously recognized. We presented HCoV-HKU1 NTD Fc chimeras on a nanoparticle system to mimic the densely decorated surface of HCoV-HKU1. These proteins were expressed by HEK293S GNTI- cells, generating species carrying Man-5 structures, often observed near the receptor binding site of CoVs. This multivalent presentation of high-mannose-containing NTD proteins revealed a much broader receptor binding profile compared to its fully glycosylated counterpart. Using glycan microarrays, we observed that 9-O-acetylated α2-3 linked sialylated LacNAc structures are also bound, comparable to OC43 NTD, suggesting an evolutionarily conserved glycan-binding modality. Further characterization of receptor specificity indicated promiscuous binding towards 9-O-acetylated sialoglycans, independent of the glycan core (glycolipids, N- or O-glycans). We demonstrate that HCoV-HKU1 may employ additional sialoglycan receptors to trigger conformational changes in the spike glycoprotein to expose the S1-CTD for proteinaceous receptor binding.

2.
Nat Commun ; 15(1): 2979, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582892

ABSTRACT

Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin's (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Polysaccharides/metabolism , Monosaccharides/metabolism
3.
Emerg Microbes Infect ; 11(1): 2248-2263, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36036059

ABSTRACT

CVA6 is one of Enteroviruses causing worldwide epidemics of HFMD with neurological and systemic complications. A suitable animal model is necessary for studying the pathogenesis of CVA6 and evaluating antiviral and vaccine efficacy. In this study, we generated a mouse-adapted CVA6 strain that successfully infected 10-day-old ICR mice via oral route. All infected mice were paralyzed and died within 11 dpi. Analysis of pathological changes and virus loads in fourteen tissues showed that CVA6 triggered systematic damage similar to i.p. inoculation route. Unlike i.p. route, we detected oral and gastrointestinal lesions with the presence of viral antigens. Both specific anti-CVA6 serum and inactivated vaccines successfully generated immune protection in mice. Meanwhile, we also established a successful infection of CVA6 via i.p. and i.m. route in 10-day-old mice. After infection, mice developed remarkably neurological signs and systemic manifestations such as emaciation, polypnea, quadriplegia, depilation and even death. Through i.p. inoculation, pathological examination showed brain and spinal cord damage caused by the virus infection with neuronal reduction, apoptosis, astrocyte activation, and recruitment of neutrophils and monocytes. Following neurological manifestation, the CVA6 infection became systemic, and high viral loads were detected in multiple organs along with morphological changes and inflammation. Moreover, analysis of spleen cells by FACS indicated that CVA6 led to immune system activation, which further contributed to systemic inflammation. Taken together, our novel murine model of CVA6 provides a useful tool for studying the pathogenesis and evaluating antiviral and vaccine efficacy.


Subject(s)
Enterovirus A, Human , Enterovirus , Hand, Foot and Mouth Disease , Animals , Antigens, Viral , Antiviral Agents , Disease Models, Animal , Inflammation , Mice , Mice, Inbred ICR , Vaccines, Inactivated
4.
Microbiol Spectr ; 10(3): e0230721, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35604176

ABSTRACT

Coxsackievirus A2 (CVA2) is an emerging pathogen that results in hand-foot-and-mouth disease (HFMD) outbreaks. Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD. However, the immunopathogenesis of CVA2 infection is poorly understood. We first detected the transcriptional levels of 81 inflammation-related genes in neonatal mice with CVA2 infection. Remarkably, CVA2 induced higher expression of chemokine (C-X-C motif) ligand 10 (CXCL10) in multiple organs and tissues. CXCL10 acts through its cognate receptor chemokine (C-X-C motif) receptor 3 (CXCR3) and regulates immune responses. CXCL10/CXCR3 activation contributes to the pathogenesis of many inflammatory diseases. Next, we found CXCL10 and CXCR3 expression to be significantly elevated in the organs and tissues from CVA2-infected mice at 5 days postinfection (dpi) using immunohistochemistry (IHC). To further explore the role of CXCL10/CXCR3 in CVA2 pathogenesis, an anti-CXCR3 neutralizing antibody (αCXCR3) or IgG isotype control antibody was used to treat CVA2-infected mice on the same day as infection and every 24 h until 5 dpi. Our results showed that αCXCR3 therapy relieved the clinical manifestations and pathological damage and improved the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], and IL-1ß) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis by inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD. IMPORTANCE Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD cases. We detected the expression of 81 inflammation-related genes and found higher expression of CXCL10 in CVA2-infected mice. Next, we confirmed CXCL10/CXCR3 activation using immunohistochemistry and found that anti-CXCR3 neutralizing antibody (αCXCR3) therapy could relieve the clinical manifestations and pathological damage and improve the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (IL-6, TNF-α, and IL-1ß) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents the first evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis via inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD.


Subject(s)
Chemokine CXCL10/metabolism , Coxsackievirus Infections , Receptors, CXCR3/metabolism , Animals , Antibodies, Neutralizing , Chemokine CXCL10/genetics , Inflammation , Interleukin-6 , Mice , Systemic Inflammatory Response Syndrome , Tumor Necrosis Factor-alpha
5.
Sci Total Environ ; 825: 153964, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35182631

ABSTRACT

Fine particulate matter (PM2.5) pollution poses significant health concerns worldwide and can cause respiratory diseases. However, how it causes health problems is still poorly understood. Angiotensin-converting enzyme (ACE)2 is a terminal carboxypeptidase implicated in the functions of renin-angiotensin system (RAS) and plays a crucial role in the control of lung inflammation. To investigate whether ACE2 functions in PM2.5-induced lung inflammation, wild-type (WT) C57BL/6J mice and ACE2 knock-out (KO) mice were intratracheally instilled with PBS or PM2.5 suspension for 3 consecutive days, respectively. The concentrations of cytokines in bronchoalveolar lavage fluid (BALF) were determined by ELISA. The expression of ACE2 and ACE and activation of inflammatory signaling pathways in lung tissues were evaluated by immunofluorescence staining and Western blotting. We found that PM2.5 exposure increased ACE2 expression. Loss of ACE2 significantly elevated the levels of total proteins, total cells, and the concentrations of MCP-1, IL-1ß in BALF after PM2.5 challenge. Additionally, loss of ACE2 enhanced lung pathologies, airway resistance, and inflammatory signaling activation. Collectively, loss of ACE2 exacerbates PM2.5-induced acute lung injury in mice.


Subject(s)
Acute Lung Injury , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Angiotensin-Converting Enzyme 2 , Animals , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Particulate Matter/metabolism , Particulate Matter/toxicity
6.
Front Cell Infect Microbiol ; 12: 765445, 2022.
Article in English | MEDLINE | ID: mdl-35155276

ABSTRACT

Coxsackievirus A2 (CVA2) has recently been constantly detected, and is associated with viral myocarditis in children. Our previous study demonstrated that CVA2 led to heart damage in a neonatal murine model. However, the molecular mechanism of heart injury caused by CVA2 remains largely unknown. Emerging evidence suggests the significant functions of miRNAs in Coxsackievirus infection. To investigate potential miRNAs involved in heart injury caused by CVA2, our study, for the first time, conducted a RNA-seq in vivo employing infected mice hearts. In total, 87, 101 and 76 differentially expressed miRNAs were identified at 3 days post infection (dpi), 7 dpi and 7 dpi vs 3 dpi. Importantly, above 3 comparison strategies shared 34 differentially expressed miRNAs. These results were confirmed by quantitative PCR (qPCR). Next, we did GO, KEGG, and miRNA-mRNA integrated analysis of differential miRNAs. The dual-luciferase reporter assay confirmed the miRNA-mRNA pairs. To further confirm the above enriched pathways and processes, we did Western blotting and immunofluorescence staining. Our results suggest that inflammatory responses, T cell activation, apoptosis, autophagy, antiviral immunity, NK cell infiltration, and the disruption of tight junctions are involved in the pathogenesis of heart injury caused by CVA2. The dysregulated miRNAs and pathways recognized in the current study can improve the understanding of the intricate interactions between CVA2 and the heart injury, opening a novel avenue for the future study of CVA2 pathogenesis.


Subject(s)
Coxsackievirus Infections , Heart Injuries , MicroRNAs , Animals , Apoptosis , Coxsackievirus Infections/pathology , Gene Expression Profiling , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics
7.
Infect Dis Poverty ; 10(1): 119, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34535192

ABSTRACT

BACKGROUND: The incubation period is a crucial index of epidemiology in understanding the spread of the emerging Coronavirus disease 2019 (COVID-19). In this study, we aimed to describe the incubation period of COVID-19 globally and in the mainland of China. METHODS: The searched studies were published from December 1, 2019 to May 26, 2021 in CNKI, Wanfang, PubMed, and Embase databases. A random-effect model was used to pool the mean incubation period. Meta-regression was used to explore the sources of heterogeneity. Meanwhile, we collected 11 545 patients in the mainland of China outside Hubei from January 19, 2020 to September 21, 2020. The incubation period fitted with the Log-normal model by the coarseDataTools package. RESULTS: A total of 3235 articles were searched, 53 of which were included in the meta-analysis. The pooled mean incubation period of COVID-19 was 6.0 days (95% confidence interval [CI] 5.6-6.5) globally, 6.5 days (95% CI 6.1-6.9) in the mainland of China, and 4.6 days (95% CI 4.1-5.1) outside the mainland of China (P = 0.006). The incubation period varied with age (P = 0.005). Meanwhile, in 11 545 patients, the mean incubation period was 7.1 days (95% CI 7.0-7.2), which was similar to the finding in our meta-analysis. CONCLUSIONS: For COVID-19, the mean incubation period was 6.0 days globally but near 7.0 days in the mainland of China, which will help identify the time of infection and make disease control decisions. Furthermore, attention should also be paid to the region- or age-specific incubation period.


Subject(s)
COVID-19 , Global Health , Infectious Disease Incubation Period , Adolescent , Adult , COVID-19/epidemiology , China/epidemiology , Databases, Factual , Female , Global Health/statistics & numerical data , Humans , Male , Middle Aged , Observational Studies as Topic , Young Adult
8.
Viruses ; 13(8)2021 08 11.
Article in English | MEDLINE | ID: mdl-34452454

ABSTRACT

Coxsackievirus A2 (CVA2) has emerged as an active pathogen that has been implicated in hand, foot, and mouth disease (HFMD) and herpangina outbreaks worldwide. It has been reported that severe cases with CVA2 infection develop into heart injury, which may be one of the causes of death. However, the mechanisms of CVA2-induced heart injury have not been well understood. In this study, we used a neonatal mouse model of CVA2 to investigate the possible mechanisms of heart injury. We detected CVA2 replication and apoptosis in heart tissues from infected mice. The activity of total aspartate transaminase (AST) and lactate dehydrogenase (LDH) was notably increased in heart tissues from infected mice. CVA2 infection also led to the disruption of cell-matrix interactions in heart tissues, including the increases of matrix metalloproteinase (MMP)3, MMP8, MMP9, connective tissue growth factor (CTGF) and tissue inhibitors of metalloproteinases (TIMP)4. Infiltrating leukocytes (CD45+ and CD11b+ cells) were observed in heart tissues of infected mice. Correspondingly, the expression levels of inflammatory cytokines in tissue lysates of hearts, including tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1ß), IL6 and monocyte chemoattractant protein-1 (MCP-1) were significantly elevated in CVA2 infected mice. Inflammatory signal pathways in heart tissues, including phosphatidylinositol 3-kinase (PI3K)-AKT, mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB), were also activated after infection. In summary, CVA2 infection leads to heart injury in a neonatal mouse model, which might be related to viral replication, increased expression levels of MMP-related enzymes and excessive inflammatory responses.


Subject(s)
Coxsackievirus Infections/complications , Enterovirus/pathogenicity , Heart Injuries/virology , Heart/virology , Inflammation/virology , Animals , Animals, Newborn , Apoptosis , Cytokines/classification , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Enterovirus/classification , Inflammation/immunology , Matrix Metalloproteinases/classification , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/immunology , Mice , Mice, Inbred BALB C , Signal Transduction
9.
Front Microbiol ; 12: 658093, 2021.
Article in English | MEDLINE | ID: mdl-34122374

ABSTRACT

Coxsackievirus (CV) A2 has emerged as an important etiological agent in the pathogen spectrum of hand, foot, and mouth disease (HFMD). The symptoms of CVA2 infections are generally mild, but worsen rapidly in some people, posing a serious threat to children's health. However, compared with enterovirus 71 detected frequently in fatal cases, limited attention has been paid to CVA2 infections because of its benign clinical course. In the present study, we identified three CVA2 strains from HFMD infections and used the cell-adapted CVA2 strain HN202009 to inoculate 5-day-old BALB/c mice intramuscularly. These mice developed remarkably neurological symptoms such as ataxia, hind-limb paralysis, and death. Histopathological determination showed neuronophagia, pulmonary hemorrhage, myofiberlysis and viral myocarditis. Viral replication was detected in multiple organs and tissues, and CVA2 exhibited strong tropism to muscle tissue. The severity of illness was associated with abnormally high levels of inflammatory cytokines, including interleukin (IL)-6, IL-10, tumor necrosis factor α, and monocyte chemotactic protein 1, although the blockade of these proinflammatory cytokines had no obvious protection. We also tested whether an experimental formaldehyde-inactivated CVA2 vaccine could induce protective immune response in adult mice. The CVA2 antisera from the vaccinated mice were effective against CVA2 infection. Moreover, the inactivated CVA2 vaccine could successfully generate immune protection in neonatal mice. Our results indicated that the neonatal mouse model could be a useful tool to study CVA2 infection and to develop CVA2 vaccines.

10.
Biochem Biophys Res Commun ; 510(3): 472-478, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30737028

ABSTRACT

Retroviral nucleocapsid (NC) proteins are multifunctional nucleic acid binding proteins, playing critical roles in essentially every step of the viral replication cycle. As a small, basic protein, NC contains one or two highly conserved zinc-finger domains, each having an invariant CCHC motif, flanked by basic residues. In this study, we report for the first time, to our knowledge, the thermostable property of equine infectious anemia virus (EIAV) NCp11. About 43% of purified NCp11 remained soluble after incubation at 100 °C for 60 min, and heat-treated NCp11 maintained its abilities to bind to the E. coli RNA and the EIAV packaging signal sequence. At a very high degree of sequence occupancy, NCp11 inhibited first-strand cDNA synthesis catalyzed by either a commercial or the purified EIAV reverse transcriptase, and heat-treated NCp11 still inhibited the first-strand cDNA synthesis. We also found that protein concentrations, at a range from 0.1 to 0.9 µg/µl, have not affected the NCp11 thermostability significantly. However, NCp11 at acidic pH was more thermostable. Our findings highlight a new feature of the NC protein. Detailed understanding of NC's properties and functions will facilitate the development of effective and rational therapeutic strategies against retroviruses.


Subject(s)
Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , DNA, Complementary/biosynthesis , Edetic Acid , Hot Temperature , Hydrogen-Ion Concentration , Protein Stability , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...