Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 202: 105912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879294

ABSTRACT

Herbicide resistance is a worldwide concern for weed control. Cucumis melo L. var. agrestis Naud. (C. melo) is an annual trailing vine weed that is commonly controlled by nicosulfuron, acetolactate synthase (ALS)-inhibiting herbicides. However, long-term use of this herbicide has led to the emergence of resistance and several nicosulfuron resistant populations of C. melo have been found. Here we identified a resistant (R) C. melo population exhibiting 7.31-fold resistance to nicosulfuron compared with a reference sensitive (S) population. ALS gene sequencing of the target site revealed no amino acid substitution in R plants, and no difference in enzyme activity, as shown by ALS activity assays in vitro. ALS gene expression was not significantly different before and after the application of nicosulfuron. Pretreatment with the cytochrome P450 monooxygenase (P450) inhibitor malathion reduced nicosulfuron resistance in the R population. RNA-Seq transcriptome analysis was used to identify candidate genes that may confer metabolic resistance to nicosulfuron. We selected genes with annotations related to detoxification functions. A total of 20 candidate genes (7 P450 genes, 1 glutathione S-transferase (GST) gene, 2 ATP-binding cassette (ABC) transporters, and 10 glycosyltransferase (GT)) were identified; 12 of them (7 P450s, 1 GST, 2 ABC transporters, and 2 GTs) were demonstrated significantly differential expression between R and S by quantitative real-time RT-PCR (qRT-PCR). Our findings revealed that the resistance mechanism in C. melo was nontarget-site based. Our results also provide a valuable resource for studying the molecular mechanisms of weed resistance.


Subject(s)
Acetolactate Synthase , Cucumis melo , Herbicide Resistance , Herbicides , Pyridines , Sulfonylurea Compounds , Herbicide Resistance/genetics , Sulfonylurea Compounds/pharmacology , Herbicides/pharmacology , Herbicides/toxicity , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Cucumis melo/genetics , Cucumis melo/drug effects , Pyridines/pharmacology , RNA-Seq , Gene Expression Profiling , Malathion/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism
2.
J Agric Food Chem ; 71(46): 17742-17751, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934576

ABSTRACT

Echinochloa phyllopogon, a malignant weed in Northeast China's paddy fields, is currently presenting escalating resistance concerns. Our study centered on the HJHL-715 E. phyllopogon population, which showed heightened resistance to penoxsulam, through a whole-plant bioassay. Pretreatment with a P450 inhibitor malathion significantly increased penoxsulam sensitivity in resistant plants. In order to determine the resistance mechanism of the resistant population, we purified the resistant population from individual plants and isolated target-site resistance (TSR) and nontarget-site resistance (NTSR) materials. Pro-197-Thr and Trp-574-Leu mutations in acetolactate synthase (ALS) 1 and ALS2 of the resistant population drove reduced sensitivity of penoxsulam to the target-site ALS, the primary resistance mechanisms. To fully understand the NTSR mechanism, NTSR materials were investigated by using RNA-sequencing (RNA-seq) combined with a reference genome. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis further supported the enhanced penoxsulam metabolism in NTSR materials. Gene expression data and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation confirmed 29 overexpressed genes under penoxsulam treatment, with 16 genes concurrently upregulated with quinclorac and metamifop treatment. Overall, our study confirmed coexisting TSR and NTSR mechanisms in E. phyllopogon's resistance to ALS inhibitors.


Subject(s)
Acetolactate Synthase , Echinochloa , Herbicides , Echinochloa/genetics , Echinochloa/metabolism , Herbicide Resistance/genetics , Tandem Mass Spectrometry , Herbicides/pharmacology , Herbicides/metabolism , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...