Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(22): 228402, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877915

ABSTRACT

Living systems are maintained out of equilibrium by external driving forces. At stationarity, they exhibit emergent selection phenomena that break equilibrium symmetries and originate from the expansion of the accessible chemical space due to nonequilibrium conditions. Here, we use the matrix-tree theorem to derive upper and lower thermodynamic bounds on these symmetry-breaking features in linear and catalytic biochemical systems. Our bounds are independent of the kinetics and hold for both closed and open reaction networks. We also extend our results to master equations in the chemical space. Using our framework, we recover the thermodynamic constraints in kinetic proofreading. Finally, we show that the contrast of reaction-diffusion patterns can be bounded only by the nonequilibrium driving force. Our results provide a general framework for understanding the role of nonequilibrium conditions in shaping the steady-state properties of biochemical systems.

2.
Phys Rev E ; 108(6): L062101, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243435

ABSTRACT

Quantifying irreversibility of a system using finite information constitutes a major challenge in stochastic thermodynamics. We introduce an observable that measures the time-reversal asymmetry between two states after a given time lag. Our central result is a bound on the time-reversal asymmetry in terms of the total cycle affinity driving the system out of equilibrium. This result leads to further thermodynamic bounds on the asymmetry of directed fluxes, on the asymmetry of finite-time cross-correlations, and on the cycle affinity of coarse-grained dynamics.

3.
Entropy (Basel) ; 23(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34441208

ABSTRACT

When exposed to a thermal gradient, reaction networks can convert thermal energy into the chemical selection of states that would be unfavourable at equilibrium. The kinetics of reaction paths, and thus how fast they dissipate available energy, might be dominant in dictating the stationary populations of all chemical states out of equilibrium. This phenomenology has been theoretically explored mainly in the infinite diffusion limit. Here, we show that the regime in which the diffusion rate is finite, and also slower than some chemical reactions, might bring about interesting features, such as the maximisation of selection or the switch of the selected state at stationarity. We introduce a framework, rooted in a time-scale separation analysis, which is able to capture leading non-equilibrium features using only equilibrium arguments under well-defined conditions. In particular, it is possible to identify fast-dissipation sub-networks of reactions whose Boltzmann equilibrium dominates the steady-state of the entire system as a whole. Finally, we also show that the dissipated heat (and so the entropy production) can be estimated, under some approximations, through the heat capacity of fast-dissipation sub-networks. This work provides a tool to develop an intuitive equilibrium-based grasp on complex non-isothermal reaction networks, which are important paradigms to understand the emergence of complex structures from basic building blocks.

4.
Nat Commun ; 12(1): 2749, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980850

ABSTRACT

The exclusive presence of ß-D-ribofuranose in nucleic acids is still a conundrum in prebiotic chemistry, given that pyranose species are substantially more stable at equilibrium. However, a precise characterisation of the relative furanose/pyranose fraction at temperatures higher than about 50 °C is still lacking. Here, we employ a combination of NMR measurements and statistical mechanics modelling to predict a population inversion between furanose and pyranose at equilibrium at high temperatures. More importantly, we show that a steady temperature gradient may steer an open isomerisation network into a non-equilibrium steady state where furanose is boosted beyond the limits set by equilibrium thermodynamics. Moreover, we demonstrate that nonequilibrium selection of furanose is maximum at optimal dissipation, as gauged by the temperature gradient and energy barriers for isomerisation. The predicted optimum is compatible with temperature drops found in hydrothermal vents associated with extremely fresh lava flows on the seafloor.

5.
Commun Chem ; 4(1): 16, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-36697543

ABSTRACT

Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (e.g. in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. Here we present a simple chemical network in which the selection of states is driven by the thermodynamic necessity of dissipating heat as rapidly as possible in the presence of a thermal gradient: states participating to faster reactions contribute the most to the dissipation rate, and are the most populated ones in non-equilibrium steady-state conditions. Building upon these results, we show that, as the complexity of the chemical network increases, the velocity of the reaction path leading to a given state determines its selection, giving rise to non-trivial localization phenomena in state space. A byproduct of our studies is that, in the presence of a temperature gradient, thermophoresis-like behavior inevitably appears depending on the transport properties of each individual state, thus hinting at a possible microscopic explanation of this intriguing yet still not fully understood phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL
...