Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 127: 111328, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38064810

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is an essential element in cellular metabolism that regulates fundamental biological processes. Growing evidence suggests that a decline in NAD+ is a common pathological factor in various diseases and aging. However, its role in airway epithelial barrier function in response to asthma remains underexplored. The current study aims to explore the efficacy of restoring cellular NAD+ concentration through supplementation with the NAD+ precursor, nicotinamide mononucleotide (NMN), in the treatment of allergic asthma and to investigate the role of SIRT3 in mediating the effects of NAD+ precursors. In this research, NMN alleviated airway inflammation and reduced mucus secretion in house dust mite (HDM)-induced asthmatic mice. It also mitigated airway epithelial barrier disruption in HDM-induced asthma in vitro and in vivo. But inhibition of SIRT3 expression abolished the effects of NMN. Mechanistically, HDM induced SIRT3 SUMOylation and proteasomal degradation. Mutation of these two SIRT3 SUMO modification sites enhanced the stability of SIRT3. Additionally, SIRT3 was targeted by SENP1 which acted to de-conjugate SUMO. And down-regulation of SENP1 expression in HDM-induced models was reversed by NMN. Collectively, these findings suggest that NMN attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma. Blockage of SIRT3 SUMOylation emerges as for the treatment of allergic asthma.


Subject(s)
Asthma , Sirtuin 3 , Mice , Animals , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sumoylation , Pyroglyphidae
3.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119524, 2023 10.
Article in English | MEDLINE | ID: mdl-37348765

ABSTRACT

The potential role of polycomb chromobox 4 (Cbx4), as a small ubiquitin-like ligase (SUMO) E3 ligase, in the development and exacerbation of asthma remains unclear. Hypoxia inducible factor-1 (HIF-1) is a key transcription factor in the cellular response to hypoxia and contributes to the pathogenesis and progression of a range of diseases, including asthma. Here, we aimed to investigate the interaction of Cbx4 with Hypoxia inducible factor-1α (HIF-1α) and the potent mechanism of action in asthma progression. In present study, in vitro and ex vivo results demonstrated that Cbx4 interacts with HIF-1α protein through its SUMO E3 ligase activity and enhances the sumoylation, which increases HIF-1 transactivation through Cbx4 and promotes the differentiation of Th9 cells, then in turn promotes the process of asthma. Treatment of inhibitors targeting SUMO E3 ligase activity of Cbx4 or HIF-1α can effectively reduce HIF-1α activation and differentiation of Th9 cells, which further attenuates the asthma in mouse model. Current results collectively demonstrated Cbx4 can govern HIF-1α to involve in Th9 cell differentiation promoting asthma by its SUMO E3 ligase activity, providing a new direction for clinical treatment of asthma.


Subject(s)
Asthma , Ubiquitin-Protein Ligases , Animals , Mice , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cell Differentiation , Asthma/genetics , Hypoxia
4.
Respir Res ; 24(1): 8, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627645

ABSTRACT

BACKGROUND: Lung fibroblast activation is associated with airway remodeling during asthma progression. Stearoyl-CoA desaturase 1 (SCD1) plays an important role in the response of fibroblasts to growth factors. This study aimed to explore the effects of SCD1 on fibroblast activation induced by transforming growth factor-ß1 (TGF-ß1) and the role of the phosphatidylinositol-3-kinase-AKT serine-threonine protein kinase-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway on the regulation of SCD1 expression in airway remodeling. METHODS: Female C57BL/6 mice were sensitized and challenged with house dust mites to generate a chronic asthma model. The inhibitor of SCD1 was injected i.g. before each challenge. The airway hyper-responsiveness to methacholine was evaluated, and airway remodeling and airway inflammation were assessed by histology. The effects of SCD1 on fibroblast activation were evaluated in vitro using an SCD1 inhibitor and oleic acid and via the knockdown of SCD1. The involvement of the PI3K-Akt-mTOR-sterol regulatory element-binding protein 1 (SREBP1) pathway in lung fibroblasts was investigated using relevant inhibitors. RESULTS: The expression of SCD1 was increased in fibroblasts exposed to TGF-ß1. The inhibition of SCD1 markedly ameliorated airway remodeling and lung fibroblast activation in peripheral airways. The knockdown or inhibition of SCD1 resulted in significantly reduced extracellular matrix production in TGF-ß1-treated fibroblasts, but this effect was reversed by the addition of exogenous oleic acid. The PI3K-Akt-mTOR-SREBP1 pathway was found to be involved in the regulation of SCD1 expression and lung fibroblast activation. CONCLUSIONS: The data obtained in this study indicate that SCD1 expression contributes to fibroblast activation and airway remodeling and that the inhibition of SCD1 may be a therapeutic strategy for airway remodeling in asthma.


Subject(s)
Asthma , Proto-Oncogene Proteins c-akt , Animals , Mice , Female , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta1/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Oleic Acid/pharmacology , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/pharmacology , Airway Remodeling , Mice, Inbred C57BL , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Lung/metabolism , Asthma/pathology , Fibroblasts/metabolism , Sirolimus/pharmacology , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
5.
Int Immunopharmacol ; 113(Pt A): 109333, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36306558

ABSTRACT

Epithelial barrier dysfunction is involved in the pathogenesis of asthma. Previous studies show that SUMOylation can regulate epithelial junction molecule localization. However, the role of SUMOylation in epithelial barrier dysfunction in asthma remains unclear. This study found that inhibition of SUMOylation attenuates house dust mite (HDM)-induced epithelial barrier dysfunction. The SUMOylation levels of junction molecules were determined by co-immunoprecipitation (CO-IP) and proximity ligation assay (PLA). HDM treatment significantly enhanced SUMOylation levels of ß-catenin, while no effect was seen on ZO-1, Occludin, and E-cadherin SUMOylation levels. Inhibition of ß-catenin SUMOylation through 2-D08 treatment or SUMOylation modification site mutant (K233A) promoted its membrane localization and repressed Wnt/ß-catenin signaling. Further, we identified that CBX4, an E3 ligase, mediated SUMOylation of ß-catenin. Knockdown of CBX4 promoted ß-catenin membrane localization and improved epithelial barrier function. In vivo analysis showed that AAV6-shCBX4-mediated knockdown of CBX4 attenuated HDM-induced allergic airway inflammation and epithelial barrier dysfunction. The findings showed that inhibiting ß-catenin SUMOylation by targeting CBX4 mitigated HDM-induced epithelial barrier dysfunction in asthma.


Subject(s)
Asthma , beta Catenin , Animals , Humans , beta Catenin/metabolism , Sumoylation , Cell Line , Pyroglyphidae , Asthma/pathology , Dermatophagoides pteronyssinus/metabolism , Ligases/genetics , Polycomb-Group Proteins
6.
Respir Res ; 23(1): 75, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351157

ABSTRACT

BACKGROUND: Up-regulation of aerobic glycolysis has been reported as a characterization of asthma and facilitates airway inflammation. We has been previously reported that short isoform thymic stromal lymphopoietin (sTSLP) could reduce inflammation in asthmatic airway epithelial cells. Here we wanted to investigate whether the inhibition of sTSLP on asthma is related to aerobic glycolysis. METHODS: Asthmatic model was established in challenging Male BALB/c mice and 16-HBE (human bronchial epithelial) cell line with house dust mite (HDM). Indicators of glycolysis were assessed to measure whether involve in sTSLP regulating airway epithelial cells inflammation in asthmatic model in vivo and in vitro. RESULTS: sTSLP decreased inflammation of asthmatic airway and aerobic glycolysis in mice. HDM or long isoform thymic stromal lymphopoietin (lTSLP) promoted HIF-1α expression and aerobic glycolysis by miR-223 to target and inhibit VHL (von Hippel-Lindau) expression 16-HBE. Inhibition of aerobic glycolysis restrained HDM- and lTSLP-induced inflammatory cytokines production. sTSLP along had almost no potential to alter aerobic glycolysis of 16-HBE. But sTSLP decreased LDHA (lactate dehydrogenase A) and LD (Lactic acid) levels in BALF, and HIF-1α and LDHA protein levels in airway epithelial cells of asthma mice model. lTSLP and sTSLP both induced formation of TSLPR and IL-7R receptor complex, and lTSLP obviously facilitated phosphorylation of JAK1, JAK2 and STAT5, while sTSLP induced a little phosphorylation of JAK1 and STAT5. CONCLUSION: We identified a novel mechanism that lTSLP could promote inflammatory cytokines production by miR-223/VHL/HIF-1α pathway to upregulate aerobic glycolysis in airway epithelial cells in asthma. This pathway is suppressed by sTSLP through occupying binding site of lTSLP in TSLPR and IL-7R receptor complex.


Subject(s)
Asthma , Cytokines , Animals , Asthma/metabolism , Cytokines/metabolism , Epithelium/metabolism , Glycolysis , Humans , Inflammation/metabolism , Male , Mice , Protein Isoforms , Thymic Stromal Lymphopoietin
7.
Am J Respir Cell Mol Biol ; 66(6): 648-660, 2022 06.
Article in English | MEDLINE | ID: mdl-35358396

ABSTRACT

Thymic stromal lymphopoietin presents in two distinct isoforms: short-form (sfTSLP) and long-form (lfTSLP). lfTSLP promotes inflammation, whereas sfTSLP inhibits inflammation, in allergic asthma. However, little is known about the regulation of lfTSLP and sfTSLP during allergic attack in the asthma airway epithelium. Here, we report that small ubiquitin-like modifier (SUMOylation) was enhanced in house dust mite-induced allergic asthma airway epithelium. Inhibition of SUMOylation significantly alleviated airway T-helper cell type 2 inflammation and lfTSLP expression. Mechanistically, chromobox 4 (CBX4), a SUMOylation E3 ligase, enhanced lfTSLP mRNA translation, but not sfTSLP, through the RNA-binding protein muscle excess (MEX)-3B. MEX-3B promoted lfTSLP translation by binding the lfTSLP mRNA through its K homology domains. Furthermore, CBX4 regulated MEX-3B transcription in human bronchial epithelial cells through enhancing SUMOylation concentrations of the transcription factor TFII-I. In conclusion, we demonstrate an important mechanism whereby CBX4 promotes MEX-3B transcription through enhancing TFII-I SUMOylation and MEX-3B enhances the expression of lfTSLP through binding to the lfTSLP mRNA and promoting its translation. Our findings uncover a novel target of CBX4 for therapeutic agents for lfTSLP-mediated asthma.


Subject(s)
Asthma , Cytokines , Ligases , Polycomb-Group Proteins , Pyroglyphidae , Sumoylation , Animals , Asthma/immunology , Asthma/metabolism , Cytokines/metabolism , Humans , Inflammation , Ligases/metabolism , Polycomb-Group Proteins/metabolism , Pyroglyphidae/immunology , RNA, Messenger/metabolism , Thymic Stromal Lymphopoietin
8.
Front Pharmacol ; 13: 795934, 2022.
Article in English | MEDLINE | ID: mdl-35222024

ABSTRACT

Avasimibe (Ava) is an acetyl-CoA acetyltransferase 1 (ACAT1) specific inhibitor and an established medicine for atherosclerosis, owing to its excellent and safe anti-inflammation effects in humans. However, its efficacy in asthma has not yet been reported. We first administered varying concentrations of avasimibe to house dust mite (HDM)-induced asthmatic mice; results showed that 20 mg/kg avasimibe most significantly reduced IL-4 and IL-5 production in bronchoalveolar lavage fluid (BALF) and total IgE in serum, and the avasimibe treatment also exhibited lower mucus secretion, decreased goblet and basal cells but increased ciliated cells compared to the HDM group. And the redistribution of adherens junction (AJ) proteins induced by HDM was far more less upon avasimibe administration. However, avasimibe did not reduce the cholesterol ester ratio in lung tissues or intracellular cholesterol ester, which is avasimibe's main effect. Further analysis confirmed that avasimibe impaired epithelial basal cell proliferation independent of regulating cholesterol metabolism and we analyzed datasets using the Gene Expression Omnibus (GEO) database and then found that the KRT5 gene (basal cell marker) expression is correlated with the ß-catenin gene. Moreover, we found that ß-catenin localized in cytomembrane upon avasimibe treatment. Avasimibe also reduced ß-catenin phosphorylation in the cytoplasm and inactivated the Wnt/ß-catenin signaling pathway induced by HDMs, thereby alleviating the airway epithelial barrier disruption. Taken together, these findings indicated that avasimibe has potential as a new therapeutic option for allergic asthma.

9.
Int Immunopharmacol ; 94: 107488, 2021 May.
Article in English | MEDLINE | ID: mdl-33640857

ABSTRACT

MicroRNA-181b (miR-181b) has been well noted with anti-inflammatory properties in several pathological conditions. It has also been suggested to be downregulated in patients with asthma. In this study, we explored the function of miR-181b in airway remodeling in asthmatic mice and the molecular mechanism. A mouse model with asthma was induced by ovalbumin (OVA) challenge, and miR-181b was found to be downregulated in lung tissues in the OVA-challenged mice. Overexpression of miR-181b was introduced in mice, after which the respiratory resistance, inflammatory infiltration, mucus production, and epithelial-mesenchymal transition (EMT) and fibrosis in mouse airway tissues were decreased. The integrated bioinformatics analysis suggested long non-coding RNA (lncRNA) TUG1 as a sponge for miR-181b. miR-181 directly targeted high mobility group box 1 (HMGB1) mRNA. HMGB1 was suggested to enhance activation of the nuclear factor kappa B (NF-κB) signaling. Further upregulation of lncRNA TUG1 blocked the protective functions of miR-181b in asthmatic mice. To conclude, this study evidenced that lncRNA TUG1 reinforces HMGB1 expression through sequestering microRNA-181b, which activates the NF-κB signaling pathway and promotes airway remodeling in asthmatic mice. This study may provide novel ideas in asthma management.


Subject(s)
Airway Remodeling/immunology , Asthma/immunology , HMGB1 Protein/immunology , MicroRNAs/immunology , RNA, Long Noncoding/immunology , Airway Remodeling/genetics , Allergens , Animals , Asthma/genetics , Asthma/pathology , Cells, Cultured , Disease Models, Animal , Female , HMGB1 Protein/genetics , Lung/pathology , Mice, Inbred BALB C , Mucus/immunology , NF-kappa B/immunology , Ovalbumin , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...