Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Mol Med Rep ; 10(2): 605-14, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24890669

ABSTRACT

Human adipose­derived stem cells (ASCs) isolated from various body sites have been widely investigated in basic and clinical studies. However, ASCs derived from human breast tissue (hbASCs) have not been extensively investigated. In order to expand our understanding of hbASCs and examine their potential applications in stem cell research and cell­based therapy, hbASCs were isolated from discarded surgical fat tissue following reduction mammoplasty and a comprehensive characterization of these hbASCs was performed, including analysis of their cellular morphology, growth features, cell surface protein markers and multilineage differentiation capacity. These hbASCs expressed cluster of differentiation (CD)44, CD49d, CD90 and CD105, but did not express CD31 and CD34. Subsequently, the hbASCs were differentiated into adipocytes, osteocytes and chondrocytes in vitro. In order to examine the potential applications of hbASCs in breast reconstruction, an approach to promote in vitro differentiation of hbASCs into mammary gland­like epithelial cells (MGECs) was developed using activated autologous platelet­rich plasma (PRP). A proliferation phase and a subsequent morphological conversion phase were observed during this differentiation process. PRP significantly promoted the growth of hbASCs in the proliferation phase and increased the eventual conversion rate of hbASCs into MGECs. Thus, to the best of our knowledge, the present study provided the first comprehensive characterization of hbASCs and validated their multipotency. Furthermore, it was revealed that activated autologous PRP was able to enhance the differentiation efficiency of hbASCs into MGECs. The present study and other studies of hbASCs may aid the development of improved breast reconstruction strategies.


Subject(s)
Adipose Tissue/cytology , Breast/cytology , Epithelial Cells/cytology , Platelet-Rich Plasma/chemistry , Stem Cells/cytology , Cell Differentiation/drug effects , Cell Lineage , Cells, Cultured , Culture Media/chemistry , Culture Media/pharmacology , Female , Humans , Mammary Glands, Human/cytology , Stem Cells/metabolism
2.
Cell Physiol Biochem ; 34(6): 2091-104, 2014.
Article in English | MEDLINE | ID: mdl-25562157

ABSTRACT

BACKGROUND: The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1) and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4) are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs) and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs) transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. METHODS: Human breast adipose-derived stem cells (HBASCs) were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP) and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A), GFP-labeled HBASCs (group B), the known vascularization-promoting agent VEGF (group C), or medium (group D) and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR). RESULTS: The data revealed that the control (group D) transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A) and untransfected (group B) HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively), whereas VEGF-transfected HBASCs (group C) were less effective (41.2 ± 5.1%). Histological analysis revealed that both types of HBASCs-treated transplants consisted predominantly of adipose tissue, unlike the control transplants, and also presented significantly less fat necrosis and fibrosis. The CXCR4-transfected HBASCs-treated transplants had a significantly higher capillary density than did the other transplants and showed GFP and CD31 double-positive cells (i.e., ASCs-derived endothelial cells). The mRNA expression of CXCR4 and SDF-1α was much higher in the CXCR4-transfected HBASCs transplants than in the other three transplants. CONCLUSIONS: Our data demonstrated that HBASCs can enhance the survival and quality of transplanted free fat tissues. Moreover, CXCR4 transfection of these HBASCs could augment this effect. Stimulation of angiogenesis and decreased fat cell apoptosis due to the recruitment of endothelial progenitor cells (EPCs) and an increase in graft revascularization are potential mechanisms underlying the improved long-term survival of free fat transplants following CXCR4-transfected HBASCs treatment.


Subject(s)
Cell Proliferation/genetics , Receptors, CXCR4/metabolism , Stem Cell Transplantation , Stromal Cells/cytology , Transplantation, Autologous , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Apoptosis/genetics , Breast/cytology , Cell Survival/genetics , Chemokine CXCL12/genetics , Graft Survival , Humans , Mice
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 28(5): 774-8, 2008 May.
Article in Chinese | MEDLINE | ID: mdl-18504202

ABSTRACT

OBJECTIVE: To investigate the effect of rabbit saphenous and sciatic nerve homogenates on the proliferation and calcification of rabbit osteoblasts in vitro. METHOD: The saphenous nerves (sensory nerves) and the muscular branches of the sciatic nerve (motor nerve) were collected from 48 New Zealand white rabbits to prepare the nerve tissue homogenates. Bone marrow mesenchymal stem cells (MSCs) were isolated from the rabbits and cultured in vitro, and after 14 days of routine osteogenic induction, the resultant osteoblasts were identified by immunohistochemistry, alkaline phosphatase (ALP) and Alizarin red S staining. The osteoblasts were then incubated in the induction medium containing the saphenous (sensory nerve group) or sciatic homogenates (motor nerve group), with the cells in the dexamethasone-containing, dexamethasone-free osteogenic induction medium and control medium as the control. The proliferation, total protein and ALP activity of the osteoblasts were measured every other day until the 8th day, and Alizarin red S staining was used for quantitative analysis of calcification of the cells after two weeks. RESULTS: The application of the saphenous nerve homogenates significantly promoted cell proliferation, total protein and ALP activity (P<0.01, P<0.05 and P<0.05), while exposure of the osteoblasts to dexamethasone inhibited the cell proliferation (P<0.001). Compared to dexamethasone-free group, the saphenous homogenates enhanced the mineralization of the osteoblasts (P<0.001). CONCLUSION: Saphenous nerve homogenates significantly promotes the proliferation, differentiation, ALP activity and mineralization of rabbit osteoblasts, but sciatic nerve homogenates do not show osteogenic effects on the cells.


Subject(s)
Cell Proliferation/drug effects , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Sciatic Nerve/chemistry , Sensory Receptor Cells/chemistry , Tissue Extracts/pharmacology , Animals , Bone Marrow Cells/cytology , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Culture Media/pharmacology , Female , Male , Osteoblasts/physiology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...