Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1392864, 2024.
Article in English | MEDLINE | ID: mdl-38721604

ABSTRACT

Introduction: This study aimed to study the characterization and the potential lipid-lowering effects of new isolated lactic acid bacteria from the feces of healthy adult cats. Methods: We collected 85 cat fecal samples, isolated, screening lactic acid bacteria strains from samples, and investigated their in vitro and in vivo biological properties. Results: A total of 221 lactic acid bacteria strains were isolated from 85 cat fecal samples. Sixteen strains with calcium dissolution rings greater than 1 mm were identified and selected for further characterization. Three lactic acid bacteria strains, Lactobacillus plantarum L-27-2, Pediococcus lactis L-14-1, and Enterococcus faecium, were identified as showing the most promising rates of cholesterol degradation (greater than 20%) and bacteriostatic radius (over 15 mm). These three strains exhibited robust growth and adherence to epithelial cells, along with adaptability to low pH (greater than 70%) and high bile salt conditions (greater than 60%), and remarkable cholesterol degradation and anti-pathogen activity. Sixteen mice were fed a high-fat diet (HFD) from 4 to 8 weeks of age, while a control group of the same size received a normal diet (ND). At 8 weeks of age, serum, feces and adipose tissue were collected. The results showed that, compared with mice fed an HFD diet alone, all mice fed an HFD diet plus lactic acid bacteria could decrease weight gain. P < 0.05 and the pathological changes of adipose tissue were alleviated. In addition, mice fed L-14-1 and F203 showed abdominal fat accumulation decreased (P < 0.05). Mice fed L-27-2 showed serum and liver triglyceride (TG) decreased (P < 0.05) and mice fed F203 showed serum high density lipoprotein cholesterol (HDL-C) increased (P < 0.01). mice fed L-27-2 and L-14-1 showed inflammatory cytokines (IL-6) was decreased (P < 0.01) Analysis of the fecal microbiota of mice fed these three lactic acid bacteria strains revealed alterations in the gut microbial community. There were common changes in intestinal microbes in mice fed these three lactic acid bacteria: (1) Bacteroides decreased; (2) Myxococcus increased; (3) Lachnoclostridium decreased. The microbes mentioned are all part of the core intestinal flora. Discussion: This study provided three potential lactic acid bacteria for alleviating animal obesity and inflammation.

2.
Res Vet Sci ; 172: 105252, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564887

ABSTRACT

Inulin has potential benefits for alleviating intestinal stress syndrome, constipation, and immunomodulation. However, its effects on cat gastrointestinal tract remain unexplored. Eight healthy adult British short-haired cat were administered 50 mg/kg/d inulin with a basal diet for 21 days, while fecal samples were collected to measure indole and 3-methylindole levels, immune index detection, and fecal microbial diversity on days 0, 7, 14, and 21. The results showed that adding inulin to the diet of cat could cause the increase of sIgA on day 14 (P < 0.05) and enhance their immune performance. In addition, it will also affect the fecal microbiota of the cat. Collinsella abundance was significantly increased, which could indulge ursodeoxycholic acid production. Feeding inulin had no significant effect on the levels of indole and 3-methylindole (P > 0.05). The above results showed that inulin supplementation in cat diet could improve cat health by enhancing immunity and increasing intestinal beneficial flora.


Subject(s)
Diet , Feces , Gastrointestinal Microbiome , Inulin , Animals , Inulin/pharmacology , Inulin/administration & dosage , Feces/microbiology , Cats , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Male , Indoles/pharmacology , Animal Feed/analysis , Female , Skatole , Dietary Supplements , Immunoglobulin A
3.
Microorganisms ; 12(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38257918

ABSTRACT

Lactobacilli have played an important role in the gut health of pets. The aim of this research was to study the effects of isolated Lactobacilli (named L11) on the immune, nutrient metabolism, and gut health of cats. Twelve healthy adult cats were randomly assigned into two groups, the control group (CONTROL, n = 6, without any probiotics product) and the treatment group (probiotics, n = 6, L11 109 CFU/kg feed), while using the same dry diet. On day 28, blood and fecal samples were collected, and the blood biochemical indices, fecal microbiota, short-chain fatty acids (SCFAs), immunological parameters, and odorous substances were separately tested. The triglyceride of the blood was decreased after using L11 (p < 0.05), which could probably alleviate the occurrence of cat obesity to some extent. The sIgA of the feces was increased by 30.1% (p < 0.05), which could enhance the cat's immunity. The abundance of Bifidobacteria was increased after using L11 (p < 0.05), and the indole and 3-methylindole of the feces were both reduced compared with the control group; 3-methylindole was especially reduced by 67.3% (p < 0.05), which showed that L11 could also improve the intestinal state of cats. Therefore, this research shows that L11 could be a good choice to improve the gut health and immune functions of cats, and it is probably related to the lipid mechanism of cats.

4.
J Hazard Mater ; 192(1): 93-8, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21620565

ABSTRACT

In this study, chlorine dioxide (ClO(2)) instead of chlorine (Cl(2)) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO(2) was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO(2) doses of 10mg ClO(2)/g dry sludge which was much lower than that obtained using Cl(2) based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10mg ClO(2)/g dry sludge for 40 min. ClO(2) oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO(2) oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.


Subject(s)
Bioreactors , Chlorine Compounds/chemistry , Oxides/chemistry , Sewage , Microscopy, Electron, Scanning , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...