Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835408

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.


Subject(s)
Coronavirus Infections , Host-Pathogen Interactions , Porcine epidemic diarrhea virus , Sodium-Potassium-Exchanging ATPase , Swine Diseases , Animals , CD13 Antigens/metabolism , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Receptors, Virus/metabolism , RNA, Double-Stranded , RNA, Small Interfering , Swine , Swine Diseases/metabolism , Vero Cells , Virus Attachment , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Sodium-Potassium-Exchanging ATPase/metabolism
2.
Front Vet Sci ; 9: 853761, 2022.
Article in English | MEDLINE | ID: mdl-35799839

ABSTRACT

Porcine Circovirus-like (PCL) virus, a new emerging virus, has been widely detected in Guangdong, Guangxi, and Anhui provinces in China, which may be a novel agent causing severe diarrhea in newborn piglets and tending to spread widely. Evidence suggests that the virus is related to hemorrhagic enteritis and diarrhea, and many newborn piglets were emaciated to death after infection. Therefore, a sensitive, quick, and accurate detection system for virus detection and epidemiological investigation is necessary. In this study, we developed a real-time quantitative PCR assay based on SYBR green for the detection of PCL virus. The ORF4 conserved region of PCL virus was found by the alignment of the uploaded genome sequences to design specific primers, and the primers were tested and showed good specificity, sensitivity, and reproducibility. Approximately, 138 fecal samples were obtained from diarrheal pigs in South China from June to December 2021. Approximately, 22.46% (31/138) of the samples and 40% (8/20) of the pig farms were positive for PCL virus, respectively, by using this method. Moreover, it is worth noting that the virus was first detected in Hainan and Jiangxi Provinces of China, which means that the virus may spread widely in China. Through evolutionary tree analysis and partial sequence comparison, there are some differences of virus genes in each province, suggesting that there is a risk of variation, and the four PCL virus strains showed a sequence similarity of 86.7%-87.8% for the rep gene and 92.2%-92.9% for the Rep protein, respectively, with Bo-Circo-like virus that is detected in bovine, which further demonstrates a close relationship between the two viruses that originated from different animals. In conclusion, our study provides a useful diagnostic approach to PCL virus detection and epidemiological inquiry. Meanwhile, the epidemic data using this real-time qPCR assay provide evidence for the widespread variations and epidemic of the virus in South China, and warn the appropriate measures for prevention, and control of porcine circovirus-like virus infection should be under consideration in pig production.

3.
Arch Virol ; 166(11): 3127-3141, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34529151

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious infectious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), which inflicts major economic losses on the global pig farming industry. Based on its similarity to highly pathogenic strains, the GDzj strain isolated in this study was predicted to be highly pathogenic. We therefore analyzed the pathogenicity of this strain experimentally in piglets. All piglets challenged with this virus experienced fever or high fever, loss of appetite, decreased food intake, daily weight loss, shortness of breath, and listlessness, and the necropsy results showed that they had experienced severe interstitial pneumonia. We then used the BAC system to construct a full-length cDNA infectious clone of GDzj, and the rescued virus displayed in vitro proliferation characteristics similar to those of the parental PRRSV strain. In summary, we successfully isolated a highly pathogenic PRRSV strain and constructed a full-length infectious cDNA clone from it, thereby providing an effective reverse genetics platform for further study of viral pathogenesis.


Subject(s)
Porcine Reproductive and Respiratory Syndrome/etiology , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Animals , Chromosomes, Artificial, Bacterial , DNA, Complementary/genetics , Genome, Viral , Lung/virology , Lymph Nodes/pathology , Lymph Nodes/virology , Phylogeny , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/growth & development , Porcine respiratory and reproductive syndrome virus/isolation & purification , Swine
4.
Arch Virol ; 166(8): 2141-2149, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34009439

ABSTRACT

Porcine circovirus type 3 (PCV3) has been widely detected throughout the world since it was first discovered on pig farms in 2015. PCV3 is closely associated with cardiac and multisystem inflammation, respiratory disease, congenital tremors, myocarditis, diarrhea, encephalitis and neurologic disease, and periarteritis. However, there have been few reports on the relationship between PCV3 and inflammatory pathways. The NF-κB signaling pathway plays an important role in the defense against viral infection. Here, we demonstrate that the capsid protein (Cap) of PCV3 plays a key role in the activation of NF-κB signaling in HEK-293T cells. Furthermore, PCV3 Cap promotes the mRNA expression of the pro-inflammatory cytokines IL6 and TNFα. In addition, PCV3 Cap promotes RIG-I and MDA5 mRNA expression in RIG-like receptor (RLR) signaling and MyD88 mRNA expression in Toll-like receptor (TLR) signaling but does not influence TRIF mRNA expression in TLR signaling. These results show that PCV3 Cap activates NF-κB signaling, possibly through the RLR and the TLR signaling pathways. This work illustrates that PCV3 Cap activates NF-κB signaling and thus may provide a basis for the pathogenesis of PCV3 and the innate immunity of the host.


Subject(s)
Capsid Proteins/immunology , Circovirus/metabolism , Cytokines/genetics , Signal Transduction , Circovirus/immunology , DEAD Box Protein 58/genetics , HEK293 Cells , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interleukin-6/genetics , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...