Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(3): 3232-3242, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38221726

ABSTRACT

Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.


Subject(s)
Boron Neutron Capture Therapy , Boron , Boron Neutron Capture Therapy/methods , Relative Biological Effectiveness , Neutrons
2.
Front Med (Lausanne) ; 10: 1199881, 2023.
Article in English | MEDLINE | ID: mdl-37324130

ABSTRACT

Boron neutron capture therapy (BNCT) induces intracellular nuclear reaction to destroy cancer cells during thermal neutron irradiation. To selectively eliminate cancer cells but avoid harmful effects on normal tissues, novel boron-peptide conjugates with angiopep-2, namely ANG-B, were constructed and evaluated in preclinical settings. Boron-peptide conjugates were synthesized using solid-phase peptide synthesis, and the molecular mass was validated by mass spectrometry afterwards. Boron concentrations in 6 cancer cell lines and an intracranial glioma mouse model after treatments were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Phenylalanine (BPA) was tested in parallel for comparison. In vitro treatment with boron delivery peptides significantly increased boron uptake in cancer cells. BNCT with 5 mM ANG-B caused 86.5% ± 5.3% of clonogenic cell death, while BPA at the same concentration caused 73.3% ± 6.0% clonogenic cell death. The in vivo effect of ANG-B in an intracranial glioma mouse model was evaluated by PET/CT imaging at 31 days after BNCT. The mouse glioma tumours in the ANG-B-treated group were shrunk by 62.9% on average, while the BPA-treated tumours shrank by only 23.0%. Therefore, ANG-B is an efficient boron delivery agent, which has low cytotoxicity and high tumour-to-blood ratio. Based on these experimental results, we expected that ANG-B may leverage BNCT performance in clinical applications in future.

3.
Sensors (Basel) ; 22(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35808332

ABSTRACT

Object detection plays a vital role in autonomous driving systems, and the accurate detection of surrounding objects can ensure the safe driving of vehicles. This paper proposes a category-assisted transformer object detector called DetectFormer for autonomous driving. The proposed object detector can achieve better accuracy compared with the baseline. Specifically, ClassDecoder is assisted by proposal categories and global information from the Global Extract Encoder (GEE) to improve the category sensitivity and detection performance. This fits the distribution of object categories in specific scene backgrounds and the connection between objects and the image context. Data augmentation is used to improve robustness and attention mechanism added in backbone network to extract channel-wise spatial features and direction information. The results obtained by benchmark experiment reveal that the proposed method can achieve higher real-time detection performance in traffic scenes compared with RetinaNet and FCOS. The proposed method achieved a detection performance of 97.6% and 91.4% in AP50 and AP75 on the BCTSDB dataset, respectively.

4.
Cells ; 11(7)2022 03 31.
Article in English | MEDLINE | ID: mdl-35406737

ABSTRACT

There is an incontestable need for improved treatment modality for glioblastoma due to its extraordinary resistance to traditional chemoradiation therapy. Boron neutron capture therapy (BNCT) may play a role in the future. We designed and synthesized a 10B-boronated derivative of temozolomide, TMZB. BNCT was carried out with a total neutron radiation fluence of 2.4 ± 0.3 × 1011 n/cm2. The effects of TMZB in BNCT were measured with a clonogenic cell survival assay in vitro and PET/CT imaging in vivo. Then, 10B-boronated phenylalanine (BPA) was tested in parallel with TMZB for comparison. The IC50 of TMZB for the cytotoxicity of clonogenic cells in HS683 was 0.208 mM, which is comparable to the IC50 of temozolomide at 0.213 mM. In BNCT treatment, 0.243 mM TMZB caused 91.2% ± 6.4% of clonogenic cell death, while 0.239 mM BPA eliminated 63.7% ± 6.3% of clonogenic cells. TMZB had a tumor-to-normal brain ratio of 2.9 ± 1.1 and a tumor-to-blood ratio of 3.8 ± 0.2 in a mouse glioblastoma model. BNCT with TMZB in this model caused 58.2% tumor shrinkage at 31 days after neutron irradiation, while the number for BPA was 35.2%. Therefore, by combining the effects of chemotherapy from temozolomide and radiotherapy with heavy charged particles from BNCT, TMZB-based BNCT exhibited promising potential for therapeutic applications in glioblastoma treatment.


Subject(s)
Boron Neutron Capture Therapy , Brain Neoplasms , Glioblastoma , Animals , Boron Compounds/therapeutic use , Boron Neutron Capture Therapy/methods , Brain Neoplasms/drug therapy , Glioblastoma/pathology , Mice , Positron Emission Tomography Computed Tomography , Temozolomide/pharmacology
5.
J Am Chem Soc ; 143(18): 6798-6804, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33938744

ABSTRACT

Spin structure of a magnetic system results from the competition of various exchange couplings. Pressure-driven spin structure evolution, through altering interatomic distance, and hence, electronic structure produces baromagnetic effect (BME), which has potential applications in sensor/actuator field. Here, we report a new spin structure(CyS-AFMb) with antiferromagnetic(AFM) nature in Fe-doped Mn0.87Fe0.13NiGe. Neutron powder diffraction (NPD) under in situ hydrostatic pressure and magnetic field was conducted to reveal the spin configuration and its instabilities. We discovered that a pressure higher than 4 kbar can induce abnormal change of Mn(Fe)-Mn(Fe) distances and transform the CyS-AFMb into a conical spiral ferromagnetic(FM) configuration(45°-CoS-FMa) with easily magnetized but shortened magnetic moment by as much as 22%. The observed BME far exceeds previous reports. Our first-principles calculations provide theoretical supports for the enhanced BME. The compressed lattice by pressure favors the 45°-CoS-FMa and significantly broadened 3d bandwidth of Mn(Fe) atoms, which leads to the shortened magnetic moment and evolution of spin structure.

6.
Sci Bull (Beijing) ; 66(2): 133-138, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-36654220

ABSTRACT

Neutron imaging is an invaluable tool for noninvasive analysis in many fields. However, neutron facilities are expensive and inconvenient to access, while portable sources are not strong enough to form even a static image within an acceptable time frame using traditional neutron imaging. Here we demonstrate a new scheme for single-pixel neutron imaging of real objects, with spatial and spectral resolutions of 100 µm and 0.4% at 1 Å, respectively. Low illumination down to 1000 neutron counts per frame pattern was achieved. The experimental setup is simple, inexpensive, and especially suitable for low intensity portable sources, which should greatly benefit applications in biology, material science, and industry.

7.
Nanomaterials (Basel) ; 9(8)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382372

ABSTRACT

Hydrogen bubble phenomenon is one of the key issues to be solved in the development of a long-life target system for boron neutron capture therapy (BNCT). In this study, we assessed the kinetic behaviors of H impurities in the nano-composite target from the atomic level. Firstly, two kinds of Li/Ta nanolayer models were constructed, based on the calculated lattice parameters and surface energies. The H solution energy, diffusion mechanism, and hydrogen bubbles formation in the Li/Ta nanostructured bilayer were studied, through theoretical modeling and simulation. Our results show that the Li/Ta interfaces are effective sinks of H atoms because the H solution energies in the interface are lower. Meanwhile, due to the relatively low diffusion barriers, the large-scale H transport through the interface is possible. In addition, although it is more likely to form hydrogen bubbles in the Ta layer, compared with the Li layer, the anti-blistering ability of Ta is more impressive compared with most of other candidate materials. Therefore, the Ta layer is able to act as the hydrogen absorber in the Li/Ta bilayer, and relieve the hydrogen damage of the Li layer in the large-scale proton radiations.

8.
Appl Radiat Isot ; 115: 235-250, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27423927

ABSTRACT

At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity.


Subject(s)
Protons , Radiation Protection , Half-Life , Humans , Neutrons , Radioactivity
9.
Radiat Prot Dosimetry ; 162(3): 208-14, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24375377

ABSTRACT

The Chinese spallation neutron source (CSNS) is a high-performance pulsed neutron source, having 20 neutron beamlines for neutron scattering instruments. The shielding design of these beamlines is usually needed for Monte Carlo (MC) calculation, and the use of variance reduction methods is critical to carrying out an efficient, reliable MC shielding calculation. This paper discusses the source biasing method based on actual source term and geometry model of a CSNS neutron beamline. Dose distribution throughout the geometry model was calculated with the FLUKA MC code. Full analogue calculation and biased calculation were compared, and it was validated that the source biasing method can effectively promote the calculation efficiency.


Subject(s)
Models, Theoretical , Neutrons , Particle Accelerators/instrumentation , Radiation Injuries/prevention & control , Radiation Protection/instrumentation , Radiation Protection/methods , China , Computer Simulation , Humans , Radiation Dosage , Radiometry
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 2): 036405, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17025752

ABSTRACT

Angular distribution of protons is measured from ethanol droplet spray irradiated by linearly polarized 150 fs laser pulses at an intensity of 1.1 x 10(16)W/cm2. Fast protons (with energies >16 keV ) with an anisotropic distribution can be observed only in or near the polarization plane of the laser fields, while the slow protons (with energies

SELECTION OF CITATIONS
SEARCH DETAIL
...