Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(12): 4564-4570, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516093

ABSTRACT

Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.

2.
Adv Sci (Weinh) ; 11(1): e2305066, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939290

ABSTRACT

Mechanoluminescence is a smart light-emitting phenomenon in which applied mechanical energy is directly converted into photon emissions. In particular, mechanoluminescent materials have shown considerable potential for applications in the fields of energy and sensing. This study thoroughly investigates the mechanoluminescence and long afterglow properties of singly doped and codoped Sr2 MgSi2 O7 (SMSO) with varying concentrations of Eu2+ and Dy3+ ions. Subsequently, a comprehensive analysis of its multimode luminescence properties, including photoluminescence, mechanoluminescence, long afterglow, and X-ray-induced luminescence, is conducted. In addition, the density of states mapping is acquired through first-principles calculations, confirming that the enhanced mechanoluminescence properties of SMSO primarily stem from the deep trap introduced by Dy3+ . In contrast to traditional mixing with Polydimethylsiloxane, in this study, the powders are incorporated into optically transparent wood to produce a multiresponse with mechanoluminescence, long afterglow, and X-ray-excited luminescence. This structure is achieved by pretreating natural wood, eliminating lignin, and subsequently modifying the wood to overall modification using various smart phosphors and epoxy resin composites. After natural drying, a multifunctional composite wood structure with diverse luminescence properties is obtained. Owing to its environmental friendliness, sustainability, self-power, and cost-effectiveness, this smart mechanoluminescence wood is anticipated to find extensive applications in construction materials and energy-efficient displays.

4.
RSC Adv ; 11(28): 17291-17300, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479709

ABSTRACT

Developing a high-performance capacitive sensor for diverse application scenarios has posed requirements for the sensor to have high sensitivity, broad detection range, and cost-effectiveness. In this experiment, a flexible pressure sensor with a high sensitivity of 2.08 kPa-1 at pressure lower than 1 kPa, as well as a wide working range of 0-600 kPa and remarkable stability (for at least 4000 cycles), was designed. In the device structure, silver nanowires (Ag NWs)/MXene-composite-coated polydimethylsiloxane (PDMS) and natural bamboo leaves at different growth stages were used as the electrode and the micro-structured dielectric layers, respectively. The rough surface of the composite conductive materials and the hierarchical microstructure of the bamboo leaves ensured a high sensitivity and broad pressure range of the sandwich-structured sensor, and the different sizes of the microstructures yielded adjustable sensitivity of the sensor. Furthermore, the outstanding performance of the proposed device made it possible to detect the actual object load, human physical stimuli, and proximity distance, demonstrating applications of flexible and wearable devices in various fields, such as weight/force tapping, breath/wrist pulse/speech, joint bending, and approach distance.

SELECTION OF CITATIONS
SEARCH DETAIL
...