Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
2.
Forensic Sci Int Genet ; 71: 103062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795552

ABSTRACT

Microhaplotypes (MHs) were first recommended by Prof. Kidd for use in forensics because they can improve human identification, kinship analysis, mixture deconvolution, and ancestry prediction. Since their introduction, extensive research has demonstrated the advantages of MHs in forensic applications and provided useful data for different populations. Currently, two databases, ALFRED (ALlele FREquency Database) and MicroHapDB (MicroHaplotype DataBase), house the published MH information and population data. We previously constructed a single nucleotide polymorphism SNP-SNP MH database (D-SNPsDB) of MHs within 50 bp on the whole human genome for 26 populations integrating basic data such as physical genome positions, mapping of variant identifiers (rsIDs), allele frequencies, and basic variant information. Building upon the previous research, we further selected MHs containing at least two variants (SNPs and/or insertions/deletions [InDels]) within a short DNA fragment (≤ 50 bp) in 26 populations based on the 1000 Genomes Project dataset (Phase 3) to construct a more comprehensive database. Subsequently, we established a user-friendly website that allows users to search the MH database (MHBase) based on their research objectives and study population to find suitable loci and provides other functions such as querying reported loci, performing online calculations using the PHASE software, and calculating ancestral-related parameters. The loci in the database are classified as SNP-based MHs, which include only SNPs, and InDel-including MHs, which contain at least one InDel. Here, we provide a detailed overview of the MHBase and an analysis of shared loci at the global and continental levels, ancestral markers, the genetic distance within loci, and mapping with the genome annotation file. The website is an accessible and useful tool for researchers engaged in marker discovery, population studies, assay development, and panel design.


Subject(s)
Databases, Nucleic Acid , Forensic Genetics , Gene Frequency , Haplotypes , Polymorphism, Single Nucleotide , Humans , Forensic Genetics/methods , Genetics, Population , INDEL Mutation , Databases, Genetic , Internet , Software
3.
Forensic Sci Int Genet ; 71: 103045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615496

ABSTRACT

Identifying the sources of biosamples found at crime scenes is crucial for forensic investigations. Among the markers used for body fluid identification (BFI), mRNA has emerged as a well-studied marker because of its high specificity and remarkable stability. Despite this potential, commercially available mRNA kits specifically designed for BFI are lacking. Therefore, we developed an mRNA kit that includes 21 specific mRNA markers of body fluids, along with three housekeeping genes for BFI, to identify four forensic-relevant fluids (blood, semen, saliva, and vaginal fluids). In this study, we tested 451 single-body-fluid samples, validated the universality of the mRNA kit, and obtained a gene expression profile. We performed the validation studies in triplicates and determined the sensitivity, specificity, stability, precision, and repeatability of the mRNA kit. The sensitivity of the kit was found to be 0.1 ng. Our validation process involved the examination of 59 RNA mixtures, 60 body fluids mixtures, and 20 casework samples, which further established the reliability of the kit. Furthermore, we constructed five classifiers that can handle single-body fluids and mixtures using this kit. The classifiers output possibility values and identify the specific body fluids of interest. Our results showed the reliability and suitability of the BFI kit, and the Random Forest classifier performed the best, with 94% precision. In conclusion, we developed an mRNA kit for BFI which can be a promising tool for forensic practice.


Subject(s)
Cervix Mucus , RNA, Messenger , Saliva , Semen , Humans , RNA, Messenger/genetics , Saliva/chemistry , Female , Semen/chemistry , Cervix Mucus/chemistry , Reproducibility of Results , Male , Forensic Genetics/methods , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction , Genetic Markers , Blood Chemical Analysis , Fluorescent Dyes , Multiplex Polymerase Chain Reaction
4.
Int J Legal Med ; 138(4): 1273-1285, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38491322

ABSTRACT

In recent years, molecular biology-based diagnostic techniques have made remarkable strides and are now extensively utilized in clinical practice, providing invaluable insights for disease diagnosis and treatment. However, forensic medicine, especially forensic pathology, has witnessed relatively limited progress in the application of molecular biology technologies. A significant challenge in employing molecular techniques for forensic diagnoses lies in the quantitative and qualitative changes observed in diagnostic markers due to sample degradation-a recognized and formidable obstacle. Inspired by the success of DNA sequencing in forensic practices, which enables accurate individual identification even in cases involving degraded and deteriorated tissues and organs, we propose the application of the assay for transposase-accessible chromatin with sequencing (ATAC-seq) to identify targets at the transcriptional onset, exploring chromatin and DNA-level alterations for injury and disease inference in forensic samples. This study employs ATAC-seq to explore alterations in chromatin accessibility post-injury and their subsequent changes over a 2-h degradation period, employing traumatic brain injury (TBI) as a representative model. Our findings reveal high sensitivity of chromatin accessibility sites to injury, evidenced by shifts in thousands of peak positions post-TBI. Remarkably, these alterations remain largely unaffected by early degradation. Our results robustly endorse the notion that integrating and incorporating these specific loci for injury and disease diagnosis in forensic samples holds tremendous promise for practical application. We further validated the above results using human cortical tissue, which supported that early degradation did not significantly affect chromatin accessibility. This pioneering advancement in molecular diagnostic techniques may revolutionize the field of forensic science, especially forensic pathology.


Subject(s)
Chromatin , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/diagnosis , Humans , Sequence Analysis, DNA/methods , Transposases/genetics , DNA Degradation, Necrotic , High-Throughput Nucleotide Sequencing
5.
Forensic Sci Int Genet ; 70: 103032, 2024 May.
Article in English | MEDLINE | ID: mdl-38503203

ABSTRACT

Salivary bacterial community composition is associated with the host's internal and environmental factors, which have potential applications in forensic practice. The 16S rRNA gene sequencing is the most commonly used strategy for detecting salivary bacterial diversity; however, its platforms are not compatible with capillary electrophoresis (CE) platforms commonly used for forensic applications. Therefore, we attempted to detect the salivary bacterial diversity using a single nucleotide polymorphism (SNP) assay. Salivary bacterial diversity varies among diverse geographic locations, making it a potential supplementary biomarker for forensic geographic sourcing. To evaluate the performance of the multiplex SNaPshot assay, saliva samples from three geographic locations in China were analyzed using the multiplex SNaPshot assay and 16S rRNA gene sequencing. We screened SNPs from two high-relative-abundance salivary genera (Streptococcus and Veillonella) to construct a multiplex SNaPshot system that can be used on the CE platform. The stability and sensitivity of the multiplex SNaPshot system were also tested. A random forest classification model was used to classify samples from different regions to explore the ability of salivary bacteria to discriminate between geographic sources. Six bacterial SNPs were screened and a multiplex SNaPshot system was constructed. The stability results showed that the typing of salivary stains that were placed indoors for different days was not affected in this study. Two-thirds of mocked salivary stain samples showed more than 90% of typing results obtained for salivary stain samples with an input of 0.1 µl saliva. The results of principal coordinate analysis based on salivary bacterial diversity showed significant differences between samples from the three different geographic locations. The accuracy of the random forest classification was 66.67% based on the multiplex SNaPshot assay and 83.33% based on the 16S rRNA gene sequencing. In conclusion, this is the first attempt to detect salivary bacterial diversity using a multiplex SNaPshot bacterial SNP assay. The geographic difference in human salivary bacterial community composition was significant, as revealed by the multiplex SNaPshot assay; however, its performance in discriminating geographic sources was lower than that of 16S rRNA gene sequencing. This strategy based on bacterial SNP loci may favor the detection of human bacterial diversity in common forensic laboratories but requires further exploration in larger sample sizes and more bacterial SNP loci.


Subject(s)
Bacteria , Electrophoresis, Capillary , Humans , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Polymorphism, Single Nucleotide , China
6.
ACS Nano ; 18(12): 9137-9149, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470845

ABSTRACT

Point-of-care monitoring of small molecules in biofluids is crucial for clinical diagnosis and treatment. However, the inherent low degree of recognition of small molecules and the complex composition of biofluids present significant obstacles for current detection technologies. Although nanopore sensing excels in the analysis of small molecules, the direct detection of small molecules in complex biofluids remains a challenge. In this study, we present a method for sensing the small molecule drug gentamicin in whole blood based on the mechanosensitive channel of small conductance in Pseudomonas aeruginosa (PaMscS) nanopore. PaMscS can directly detect gentamicin and distinguish its main components with only a monomethyl difference. The 'molecular sieve' structure of PaMscS enables the direct measurement of gentamicin in human whole blood within 10 min. Furthermore, a continuous monitoring device constructed based on PaMscS achieved continuous monitoring of gentamicin in live rats for approximately 2.5 h without blood consumption, while the drug components can be analyzed in situ. This approach enables rapid and convenient drug monitoring with single-molecule level resolution, which can significantly lower the threshold for drug concentration monitoring and promote more efficient drug use. Moreover, this work also lays the foundation for the future development of continuous monitoring technology with single-molecule level resolution in the living body.


Subject(s)
Anti-Bacterial Agents , Nanopores , Humans , Rats , Animals , Anti-Bacterial Agents/pharmacology , Gentamicins , Nanotechnology , Pseudomonas aeruginosa
7.
Adv Sci (Weinh) ; 11(15): e2306399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348540

ABSTRACT

Traumatic brain injury (TBI) leads to progressive neurodegeneration that may be caused by chronic traumatic encephalopathy (CTE). However, the precise mechanism remains unclear. Herein, the study identifies a crucial protein, axonemal dynein light intermediate polypeptide 1 (DNALI1), and elucidated its potential pathogenic role in post-TBI neurodegeneration. The DNALI1 gene is systematically screened through analyses of Aging, Dementia, and TBI studies, confirming its elevated expression both in vitro and in vivo. Moreover, it is observed that altered DNALI1 expression under normal conditions has no discernible effect. However, upon overexpression, DNALI1 inhibits autophagosome-lysosome fusion, reduces autophagic flux, and exacerbates cell death under pathological conditions. DNALI1 silencing significantly enhances autophagic flux and alleviates neurodegeneration in a CTE model. These findings highlight DNALI1 as a potential key target for preventing TBI-related neurodegeneration.


Subject(s)
Brain Injuries, Traumatic , Chronic Traumatic Encephalopathy , Humans , Autophagosomes/metabolism , Autophagosomes/pathology , Brain Injuries, Traumatic/complications , Chronic Traumatic Encephalopathy/etiology , Chronic Traumatic Encephalopathy/pathology , Autophagy , Lysosomes/metabolism
8.
BMC Genomics ; 25(1): 142, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317084

ABSTRACT

Whole-exome sequencing (WES) is widely used to diagnose complex genetic diseases and rare conditions. The implementation of a robust and effective quality control system for sample identification and tracking throughout the WES process is essential. We established a multiplex panel that included 22 coding single-nucleotide polymorphism (cSNP) loci. The personal identification and paternity identification abilities of the panel were evaluated, and a preliminary validation of the practical feasibility of the panel was conducted in a clinical WES case. These results indicate that the cSNP panel could be a useful tool for sample tracking in WES.


Subject(s)
Exome , Polymorphism, Single Nucleotide , Humans , Exome Sequencing , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods
9.
Genes (Basel) ; 15(1)2024 01 18.
Article in English | MEDLINE | ID: mdl-38255006

ABSTRACT

When analyzing challenging samples, such as low-template DNA, analysts aim to maximize information while minimizing noise, often by adjusting the analytical threshold (AT) for optimal results. A potential approach involves calculating the AT based on the baseline signal distribution in electrophoresis results. This study investigates the impact of reagent kits, testing quarters, environmental conditions, and amplification cycles on baseline signals using historical records and experimental data on low-template DNA. Variations in these aspects contribute to differences in baseline signal patterns. Analysts should remain vigilant regarding routine instrument maintenance and reagent replacement, as these may affect baseline signals. Prompt analysis of baseline status and tailored adjustments to ATs under specific laboratory conditions are advised. A comparative analysis of published methods for calculating the optimal AT from a negative signal distribution highlighted the efficiency of utilizing baseline signals to enhance forensic genetic analysis, with the exception of extremely low-template samples and high-amplification cycles. Moreover, a user-friendly program for real-time analysis was developed, enabling prompt adjustments to ATs based on negative control profiles. In conclusion, this study provides insights into baseline signals, aiming to enhance genetic analysis accuracy across diverse laboratories. Practical recommendations are offered for optimizing ATs in forensic DNA analysis.


Subject(s)
DNA , Laboratories , DNA/genetics
10.
Int J Legal Med ; 138(2): 547-554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37353677

ABSTRACT

Saliva is an informative body fluid that can be found at various crime scenes, and the salivary bacterial community has been revealed it is a potential auxiliary target for forensic identification. However, the variation of salivary bacterial community composition across time and geolocation needs to be explored. The study was designed to be carried out during the winter vacation that was across about 50 days and eight geographic locations. The high throughput sequencing was performed with the V3-V4 region of the16S rRNA gene to explore salivary bacterial community composition. An overall slight fluctuation of the salivary bacteria was observed, which primarily occurred in the relative abundance of the salivary bacterial taxa. The results of principal coordinate analysis and hierarchical clustering showed samples were clustered by the individuals. All individuals could be correctly identified with the random forest model. In summation, although the relative abundance of salivary bacteria varied across the changes of time and geolocation, the individualized characteristic of salivary bacteria remained steady, which is beneficial for the salivary bacterial application in personal identification.


Subject(s)
Bacteria , Body Fluids , Humans , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Saliva/microbiology , High-Throughput Nucleotide Sequencing
11.
Electrophoresis ; 45(5-6): 463-473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946554

ABSTRACT

Next-generation sequencing (NGS) allows for better identification of insertion and deletion polymorphisms (InDels) and their combination with adjacent single nucleotide polymorphisms (SNPs) to form compound markers. These markers can improve the polymorphism of microhaplotypes (MHs) within the same length range, and thus, boost the efficiency of DNA mixture analysis. In this study, we screened InDels and SNPs across the whole genome and selected highly polymorphic markers composed of InDels and/or SNPs within 300 bp. Further, we successfully developed and evaluated an NGS-based panel comprising 55 loci, of which 24 were composed of both SNPs and InDels. Analysis of 124 unrelated Southern Han Chinese revealed an average effective number of alleles (Ae ) of 7.52 for this panel. The cumulative power of discrimination and cumulative probability of exclusion values of the 55 loci were 1-2.37 × 10-73 and 1-1.19 × 10-28 , respectively. Additionally, this panel exhibited high allele detection rates of over 97% in each of the 21 artificial mixtures involving from two to six contributors at different mixing ratios. We used EuroForMix to calculate the likelihood ratio (LR) and evaluate the evidence strength provided by this panel, and it could assess evidence strength with LR, distinguishing real and noncontributors. In conclusion, our panel holds great potential for detecting and analyzing DNA mixtures in forensic applications, with the capability to enhance routine mixture analysis.


Subject(s)
DNA Fingerprinting , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , DNA/genetics , DNA/analysis , High-Throughput Nucleotide Sequencing , Gene Frequency
12.
J Intensive Med ; 3(4): 326-334, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38028638

ABSTRACT

Background: Venovenous extracorporeal membrane oxygenation (VV-ECMO) has been demonstrated to be effective in treating patients with virus-induced acute respiratory distress syndrome (ARDS). However, whether the management of ECMO is different in treating H1N1 influenza and coronavirus disease 2019 (COVID-19)-associated ARDS patients remains unknown. Methods: This is a retrospective cohort study. We included 12 VV-ECMO-supported COVID-19 patients admitted to The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Eighth People's Hospital, and Wuhan Union Hospital West Campus between January 23 and March 31, 2020. We retrospectively included VV-ECMO-supported patients with COVID-19 and H1N1 influenza-associated ARDS. Clinical characteristics, respiratory mechanics including plateau pressure, driving pressure, mechanical power, ventilatory ratio (VR) and lung compliance, and outcomes were compared. Results: Data from 25 patients with COVID-19 (n=12) and H1N1 (n=13) associated ARDS who had received ECMO support were analyzed. COVID-19 patients were older than H1N1 influenza patients (P=0.004). The partial pressure of arterial carbon dioxide (PaCO2) and VR before ECMO initiation were significantly higher in COVID-19 patients than in H1N1 influenza patients (P <0.001 and P=0.004, respectively). COVID-19 patients showed increased plateau and driving pressure compared with H1N1 subjects (P=0.013 and P=0.018, respectively). Patients with COVID-19 remained longer on ECMO support than did H1N1 influenza patients (P=0.015). COVID-19 patients who required ECMO support also had fewer intensive care unit and ventilator-free days than H1N1. Conclusions: Compared with H1N1 influenza patients, COVID-19 patients were older and presented with increased PaCO2 and VR values before ECMO initiation. The differences between ARDS patients with COVID-19 and influenza on VV-ECMO detailed herein could be helpful for obtaining a better understanding of COVID-19 and for better clinical management.

14.
Genome Res ; 33(10): 1818-1832, 2023 10.
Article in English | MEDLINE | ID: mdl-37730437

ABSTRACT

The subventricular zone (SVZ) is a neurogenic niche that contributes to homeostasis and repair after brain injury. However, the effects of mild traumatic brain injury (mTBI) on the divergence of the regulatory DNA landscape within the SVZ and its link to functional alterations remain unexplored. In this study, we mapped the transcriptome atlas of murine SVZ and its responses to mTBI at the single-cell level. We observed cell-specific gene expression changes following mTBI and unveiled diverse cell-to-cell interaction networks that influence a wide array of cellular processes. Moreover, we report novel neurogenesis lineage trajectories and related key transcription factors, which we validate through loss-of-function experiments. Specifically, we validate the role of Tcf7l1, a cell cycle gene regulator, in promoting neural stem cell differentiation toward the neuronal lineage after mTBI, providing a potential target for regenerative medicine. Overall, our study profiles an SVZ transcriptome reference map, which underlies the differential cellular behavior in response to mTBI. The identified key genes and pathways that may ameliorate brain damage or facilitate neural repair serve as a comprehensive resource for drug discovery in the context of mTBI.


Subject(s)
Brain Injuries, Traumatic , Neural Stem Cells , Animals , Mice , Transcriptome , Neural Stem Cells/metabolism , Neurons , Cell Differentiation , Neurogenesis/physiology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism
15.
Sci Data ; 10(1): 638, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730716

ABSTRACT

As a significant type of traumatic brain injury (TBI), blast-induced traumatic brain injury (bTBI) frequently results in severe neurological and psychological impairments. Due to its unique mechanistic and clinical features, bTBI presents diagnostic and therapeutic challenges compared to other TBI forms. The hippocampus, an important site for secondary injury of bTBI, serves as a key niche for neural regeneration and repair post-injury, and is closely associated with the neurological outcomes of bTBI patients. Nonetheless, the pathophysiological alterations of hippocampus underpinning bTBI remain enigmatic, and a corresponding transcriptomic dataset for research reference is yet to be established. In this investigation, the single-nucleus RNA sequencing (snRNA-seq) technique was employed to sequence individual hippocampal nuclei of mice from bTBI and sham group. Upon stringent quality control, gene expression data from 17,278 nuclei were obtained, with the dataset's reliability substantiated through various analytical methods. This dataset holds considerable potential for exploring secondary hippocampal injury and neurogenesis mechanisms following bTBI, with important reference value for the identification of specific diagnostic and therapeutic targets for bTBI.


Subject(s)
Brain Injuries, Traumatic , Transcriptome , Animals , Mice , Brain Injuries, Traumatic/genetics , Gene Expression Profiling , Hippocampus , Reproducibility of Results
16.
Int J Legal Med ; 137(6): 1693-1703, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37731065

ABSTRACT

Mitochondrial DNA (mtDNA) is an indispensable genetic marker in forensic genetics. The emergence and development of massively parallel sequencing (MPS) makes it possible to obtain complete mitochondrial genome sequences more quickly and accurately. The study evaluated the advantages and limitations of the ForenSeq mtDNA Whole Genome Kit in the practical application of forensic genetics by detecting human genomic DNA standards and thirty-three case samples. We used control DNA with different amount to determine sensitivity of the assay. Even when the input DNA is as low as 2.5 pg, most of the mitochondrial genome sequences could still be covered. For the detection of buccal swabs and aged case samples (bloodstains, bones, teeth), most samples could achieve complete coverage of mitochondrial genome. However, when ancient samples and hair samples without hair follicles were sequenced by the kit, it failed to obtain sequence information. In general, the ForenSeq mtDNA Whole Genome Kit has certain applicability to forensic low template and degradation samples, and these results provide the data basis for subsequent forensic applications of the assay. The overall detection process and subsequent analysis are easy to standardize, and it has certain application potential in forensic cases.

17.
J Intensive Care ; 11(1): 42, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749622

ABSTRACT

BACKGROUND: Mechanical ventilation may cause pulmonary hypertension in patients with acute lung injury (ALI), but the underlying mechanism remains elucidated. METHODS: ALI was induced in rabbits by a two-hit injury, i.e., hydrochloric acid aspiration followed by mechanical ventilation for 1 h. Rabbits were then ventilated with driving pressure of 10, 15, 20, or 25 cmH2O for 7 h. Clinicopathological parameters were measured at baseline and different timepoints of ventilation. RNA sequencing was conducted to identify the differentially expressed genes in high driving pressure ventilated lung tissue. RESULTS: The two-hit injury induced ALI in rabbits was evidenced by dramatically decreased PaO2/FiO2 in the ALI group compared with that in the control group (144.5 ± 23.8 mmHg vs. 391.6 ± 26.6 mmHg, P < 0.001). High driving pressure ventilation (20 and 25 cmH2O) significantly elevated the parameters of acute pulmonary hypertension at different timepoints compared with low driving pressure (10 and 15 cmH2O), along with significant increases in lung wet/dry ratios, total protein contents in bronchoalveolar lavage fluid, and lung injury scores. The high driving pressure groups showed more pronounced histopathological abnormalities in the lung compared with the low driving pressure groups, accompanied by significant increases in the cross-sectional areas of myocytes, right ventricular weight/body weight value, and Fulton's index. Furthermore, the expression of the genes related to ferroptosis induction was generally upregulated in high driving pressure groups compared with those in low driving pressure groups. CONCLUSIONS: A rabbit model of ventilation-induced pulmonary hypertension in ALI was successfully established. Our results open a new research direction investigating the exact role of ferroptosis in ventilation-induced pulmonary hypertension in ALI.

18.
Forensic Sci Int Genet ; 66: 102903, 2023 09.
Article in English | MEDLINE | ID: mdl-37290252

ABSTRACT

The determination of human-derived samples is very important in forensic investigations and case investigation in order to determine vital information on the suspect and the case. In this study, we established a recombinase polymerase amplification (RPA) assay for rapid identification of human-derived components. The sensitivity of the assay was 0.003125 ng, with excellent species specificity, and human-derived DNA could be detected in the presence of non-human-derived components at a ratio of 1:1000. Moreover, the RPA assay had a strong tolerance to inhibitors, in the presence of 800 ng/µL humic acid, 400 ng/µL tannic acid, and 8000 ng/µL collagen. In forensic investigation, common body fluids (blood, saliva, semen, vaginal secretions) are all applicable, and the presence of DNA can be detected from samples after simple alkaline lysis, which greatly shortens the detection time. Four simulation and case samples (aged bones, aged bloodstains, hair, touch DNA) were also successfully applied. The above research results show that the RPA assay constructed in this study can be fully applied to forensic medicine to provide high sensitivity and applicability detection methods.


Subject(s)
Nucleic Acid Amplification Techniques , Recombinases , Female , Humans , Aged , Recombinases/genetics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , DNA/genetics , Forensic Medicine
19.
Microorganisms ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37374954

ABSTRACT

A mild traumatic brain injury (mTBI) can increase the risk of neurodegenerative-related disease, and serious long-term outcomes are often overlooked. In forensic science, the accurate identification of mTBIs can directly affect the application of evidence in practice cases. Recent research has revealed that the oral cavity and fecal microbiota play a fundamental role in deeply interconnecting the gut and brain injury. Therefore, we investigated the relationship between the temporal changes of the oral cavity and fecal bacterial communities with damage identification and post-injury time estimation after mTBI. In this study, we analyzed the oral cavity and fecal bacterial communities in mTBI rats under 12 different post-injury times (sham, 0 h, 2 h, 6 h, 12 h, 24 h, 2 d, 3 d, 5 d, 7 d, 10 d, and 14 d post-injury) using 16S rRNA sequencing technology. The sequence results revealed bacteria belonging to 36 phyla, 82 classes, 211 orders, 360 families, 751 genera, and 1398 species. Compared to the sham group, the relative abundance of the bacterial communities varied markedly in the post-injury groups. Importantly, our data demonstrated that Fusobacteria, Prevotellaceae, Ruminococcaceae, and Lactobacillaceae might be the potential candidates for mTBI identification, and 2 h post-injury was a critical time point to explore the temporal changes of mTBI injury-time estimation. The results also provide new ideas for mTBI treatment in the clinic.

20.
Forensic Sci Int Genet ; 65: 102887, 2023 07.
Article in English | MEDLINE | ID: mdl-37209601

ABSTRACT

In recent years, microhaplotypes (MHs) have become a research hotspot within the field of forensic genetics. Traditional MHs contain only SNPs that are closely linked within short fragments. Herein, we broaden the concept of general MHs to include short InDels. Complex kinship identification plays an important role in disaster victim identification and criminal investigations. For distant relatives (e.g., 3rd-degree), many genetic markers are required to enhance power of kinship testing. We performed genome-wide screening for new MH markers composed of two or more variants (InDel or SNP) within 220 bp based on the Chinese Southern Han from the 1000 Genomes Project. An NGS-based 67plex MH panel (Panel B) was successfully developed, and 124 unrelated individual samples were sequenced to obtain population genetic data, including alleles and allele frequencies. Of the 67 genetic markers, 65 MHs were, as far as we know, newly discovered, and 32 MHs had effective number of allele (Ae) values greater than 5.0. The average Ae and heterozygosity of the panel were 5.34 and 0.7352, respectively. Next, 53 MHs from a previous study were collected as Panel A (average Ae of 7.43), and Panel C with 87 MHs (average Ae of 7.02) was formed by combining Panels A and B. We investigated the utility of these three panels in kinship analysis (parent-child, full siblings, 2nd-degree, 3rd-degree, 4th-degree, and 5th-degree relatives), with Panel C exhibiting better performance than the two other panels. Panel C was able to separate parent-child, full-sibling, and 2nd-degree relative duos from unrelated controls in real pedigree data, with a small false testing level (FTL) of 0.11% in simulated 2nd-degree duos. For more distant relationships, the FTL was much higher: 8.99% for 3rd-degree, 35.46% for 4th-degree, and 61.55% for 5th-degree. When a carefully chosen extra relative was known, this may enhance the testing power for distant kinship analysis. Two twins from the Q family (2-5 and 2-7) and W family (3-18 and 3-19) shared the same genotypes in all tested MHs, which led to the incorrect conclusion that an uncle-nephew duo was classified as a parent-child duo. In addition, Panel C showed great capacity for excluding close relatives (2nd-degree and 3rd-degree relatives) during paternity tests. Among 18,246 real and 10,000 simulated unrelated pairs, none were misinterpreted as a relative within 2nd-degree at a log10(LR) cutoff of 4. The panels presented herein could provide supplementary power for the analysis of complex kinship.


Subject(s)
DNA Fingerprinting , High-Throughput Nucleotide Sequencing , Humans , Genetic Markers , Genotype , Gene Frequency , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...