Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Brain Commun ; 6(2): fcae082, 2024.
Article in English | MEDLINE | ID: mdl-38572270

ABSTRACT

The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.

2.
Front Pharmacol ; 15: 1348112, 2024.
Article in English | MEDLINE | ID: mdl-38545548

ABSTRACT

In recent years, the development of sensor and wearable technologies have led to their increased adoption in clinical and health monitoring settings. One area that is in early, but promising, stages of development is the use of biosensors for therapeutic drug monitoring (TDM). Traditionally, TDM could only be performed in certified laboratories and was used in specific scenarios to optimize drug dosage based on measurement of plasma/blood drug concentrations. Although TDM has been typically pursued in settings involving medications that are challenging to manage, the basic approach is useful for characterizing drug activity. TDM is based on the idea that there is likely a clear relationship between plasma/blood drug concentration (or concentration in other matrices) and clinical efficacy. However, these relationships may vary across individuals and may be affected by genetic factors, comorbidities, lifestyle, and diet. TDM technologies will be valuable for enabling precision medicine strategies to determine the clinical efficacy of drugs in individuals, as well as optimizing personalized dosing, especially since therapeutic windows may vary inter-individually. In this mini-review, we discuss emerging TDM technologies and their applications, and factors that influence TDM including drug interactions, polypharmacy, and supplement use. We also discuss how using TDM within single subject (N-of-1) and aggregated N-of-1 clinical trial designs provides opportunities to better capture drug response and activity at the individual level. Individualized TDM solutions have the potential to help optimize treatment selection and dosing regimens so that the right drug and right dose may be matched to the right person and in the right context.

3.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961404

ABSTRACT

The emergence of technologies that can support high-throughput profiling of single cell transcriptomes offers to revolutionize the study of brain tissue from persons with and without Alzheimer's disease (AD). Integration of these data with additional complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link observed cell subpopulations and molecular network features within a broader disease-relevant context. We report here single nucleus RNA sequencing (snRNA-seq) profiles generated from superior frontal gyrus cortical tissue samples from 101 exceptionally well characterized, aged subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in peripheral hematological lab parameters, with these observations replicated in an independent, prospective cohort study of ageing and dementia. We also observed an AD-associated CD83(+) microglial subtype with unique molecular networks that encompass many known regulators of AD-relevant microglial biology, and which are associated with immunoglobulin IgG4 production in the transverse colon. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal novel disease biology. The transcriptomic, genetic, phenotypic, and network data resources described within this study are available for access and utilization by the scientific community.

4.
F1000Res ; 12: 417, 2023.
Article in English | MEDLINE | ID: mdl-37954063

ABSTRACT

Background: Small bowel carcinoids are insidious tumors that are often metastatic when diagnosed. Limited mutation landscape studies of carcinoids indicate that these tumors have a relatively low mutational burden. The development of targeted therapies will depend upon the identification of mutations that drive the pathogenesis and metastasis of carcinoid tumors. Methods: Whole exome and RNA sequencing of 5 matched sets of normal tissue, primary small intestine carcinoid tumors, and liver metastases were investigated. Germline and somatic variants included: single nucleotide variants (SNVs), insertions/deletions (indels), structural variants, and copy number alterations (CNAs). The functional impact of mutations was predicted using Ensembl Variant Effect Predictor. Results: Large-scale CNAs were observed including the loss of chromosome 18 in all 5 metastases and 3/5 primary tumors. Certain somatic SNVs were metastasis-specific; including mutations in ATRX, CDKN1B, MXRA5 (leading to the activation of a cryptic splice site and loss of mRNA), SMARCA2, and the loss of UBE4B. Additional mutations in ATRX, and splice site loss of PYGL, leading to intron retention observed in primary and metastatic tumors. Conclusions: We observed novel mutations in primary/metastatic carcinoid tumor pairs, and some have been observed in other types of neuroendocrine tumors. We confirmed a previously observed loss of chromosome 18 and CDKN1B. Transcriptome sequencing added relevant information that would not have been appreciated with DNA sequencing alone. The detection of several splicing mutations on the DNA level and their consequences at the RNA level suggests that RNA splicing aberrations may be an important mechanism underlying carcinoid tumors.


Subject(s)
Carcinoid Tumor , Intestinal Neoplasms , Neuroendocrine Tumors , Humans , Multiomics , Carcinoid Tumor/genetics , Carcinoid Tumor/pathology , Carcinoid Tumor/secondary , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Ubiquitin-Protein Ligases
5.
Ann Surg Oncol ; 30(13): 8144-8155, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37710139

ABSTRACT

PURPOSE: Hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin confers a survival benefit in epithelial ovarian cancer (EOC) but is associated with renal toxicity. Sodium thiosulfate (ST) is used for nephroprotection for HIPEC with cisplatin, but standard HIPEC practices vary. METHODS: A prospective, nonrandomized, clinical trial evaluated safety outcomes of HIPEC with cisplatin 75 mg/m2 during cytoreductive surgery (CRS) in patients with EOC (n = 34) and endometrial cancer (n = 6). Twenty-one patients received no ST (nST), and 19 received ST. Adverse events (AEs) were reported according to CTCAE v.5.0. Serum creatinine (Cr) was collected preoperatively and postoperatively (Days 5-8). Progression-free survival (PFS) was followed. Normal peritoneum was biopsied before and after HIPEC for whole transcriptomic sequencing to identify RNAseq signatures correlating with AEs. RESULTS: Forty patients had HIPEC at the time of interval or secondary CRS. Renal toxicities in the nST group were 33% any grade AE and 9% grade 3 AEs. The ST group demonstrated no renal AEs. Median postoperative Cr in the nST group was 1.1 mg/dL and 0.5 mg/dL in the ST group (p = 0.0001). Median change in Cr from preoperative to postoperative levels were + 53% (nST) compared with - 9.6% (ST) (p = 0.003). PFS did not differ between the ST and nST groups in primary or recurrent EOC patients. Renal AEs were associated with downregulation of metabolic pathways and upregulation of immune pathways. CONCLUSIONS: ST significantly reduces acute renal toxicity associated with HIPEC with cisplatin in ovarian cancer patients. As nephrotoxicity is high in HIPEC with cisplatin, nephroprotective agents should be considered.


Subject(s)
Antineoplastic Agents , Hyperthermia, Induced , Ovarian Neoplasms , Humans , Female , Cisplatin/therapeutic use , Hyperthermic Intraperitoneal Chemotherapy , Antineoplastic Agents/therapeutic use , Prospective Studies , Hyperthermia, Induced/adverse effects , Neoplasm Recurrence, Local , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial , Cytoreduction Surgical Procedures/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy
6.
Front Neurosci ; 16: 1036102, 2022.
Article in English | MEDLINE | ID: mdl-36389222

ABSTRACT

The development of effective treatments to prevent and slow Alzheimer's disease (AD) pathogenesis is needed in order to tackle the steady increase in the global prevalence of AD. This challenge is complicated by the need to identify key health shifts that precede the onset of AD and cognitive decline as these represent windows of opportunity for intervening and preventing disease. Such shifts may be captured through the measurement of biomarkers that reflect the health of the individual, in particular those that reflect brain age and biological age. Brain age biomarkers provide a composite view of the health of the brain based on neuroanatomical analyses, while biological age biomarkers, which encompass the epigenetic clock, provide a measurement of the overall health state of an individual based on DNA methylation analysis. Acceleration of brain and biological ages is associated with changes in cognitive function, as well as neuropathological markers of AD. In this mini-review, we discuss brain age and biological age research in the context of cognitive decline and AD. While more research is needed, studies show that brain and biological aging trajectories are variable across individuals and that such trajectories are non-linear at older ages. Longitudinal monitoring of these biomarkers may be valuable for enabling earlier identification of divergent pathological trajectories toward AD and providing insight into points for intervention.

7.
Brain Commun ; 4(4): fcac162, 2022.
Article in English | MEDLINE | ID: mdl-35813880

ABSTRACT

The posterior cingulate cortex, a key hub of the default mode network, underlies autobiographical memory retrieval and displays hypometabolic changes early in Alzheimer disease. To obtain an unbiased understanding of the molecular pathobiology of the aged posterior cingulate cortex, we performed RNA sequencing (RNA-seq) on tissue obtained from 26 participants of the Rush Religious Orders Study (11 males/15 females; aged 76-96 years) with a pre-mortem clinical diagnosis of no cognitive impairment and post-mortem neurofibrillary tangle Braak Stages I/II, III, and IV. Transcriptomic data were gathered using next-generation sequencing of RNA extracted from posterior cingulate cortex generating an average of 60 million paired reads per subject. Normalized expression of RNA-seq data was calculated using a global gene annotation and a microRNA profile. Differential expression (DESeq2, edgeR) using Braak staging as the comparison structure isolated genes for dimensional scaling, associative network building and functional clustering. Curated genes were correlated with the Mini-Mental State Examination and semantic, working and episodic memory, visuospatial ability, and a composite Global Cognitive Score. Regulatory mechanisms were determined by co-expression networks with microRNAs and an overlap of transcription factor binding sites. Analysis revealed 750 genes and 12 microRNAs significantly differentially expressed between Braak Stages I/II and III/IV and an associated six groups of transcription factor binding sites. Inputting significantly different gene/network data into a functional annotation clustering model revealed elevated presynaptic, postsynaptic and ATP-related expression in Braak Stages III and IV compared with Stages I/II, suggesting these pathways are integral for cognitive resilience seen in unimpaired elderly subjects. Principal component analysis and Kruskal-Wallis testing did not associate Braak stage with cognitive function. However, Spearman correlations between genes and cognitive test scores followed by network analysis revealed upregulation of classes of synaptic genes positively associated with performance on the visuospatial perceptual orientation domain. Upregulation of key synaptic genes suggests a role for these transcripts and associated synaptic pathways in cognitive resilience seen in elders despite Alzheimer disease pathology and dementia.

8.
Clin Cancer Res ; 28(18): 3965-3978, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35852795

ABSTRACT

PURPOSE: PNOC003 is a multicenter precision medicine trial for children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG). PATIENTS AND METHODS: Patients (3-25 years) were enrolled on the basis of imaging consistent with DIPG. Biopsy tissue was collected for whole-exome and mRNA sequencing. After radiotherapy (RT), patients were assigned up to four FDA-approved drugs based on molecular tumor board recommendations. H3K27M-mutant circulating tumor DNA (ctDNA) was longitudinally measured. Tumor tissue and matched primary cell lines were characterized using whole-genome sequencing and DNA methylation profiling. When applicable, results were verified in an independent cohort from the Children's Brain Tumor Network (CBTN). RESULTS: Of 38 patients enrolled, 28 patients (median 6 years, 10 females) were reviewed by the molecular tumor board. Of those, 19 followed treatment recommendations. Median overall survival (OS) was 13.1 months [95% confidence interval (CI), 11.2-18.4] with no difference between patients who followed recommendations and those who did not. H3K27M-mutant ctDNA was detected at baseline in 60% of cases tested and associated with response to RT and survival. Eleven cell lines were established, showing 100% fidelity of key somatic driver gene alterations in the primary tumor. In H3K27-altered DIPGs, TP53 mutations were associated with worse OS (TP53mut 11.1 mo; 95% CI, 8.7-14; TP53wt 13.3 mo; 95% CI, 11.8-NA; P = 3.4e-2), genome instability (P = 3.1e-3), and RT resistance (P = 6.4e-4). The CBTN cohort confirmed an association between TP53 mutation status, genome instability, and clinical outcome. CONCLUSIONS: Upfront treatment-naïve biopsy provides insight into clinically relevant molecular alterations and prognostic biomarkers for H3K27-altered DIPGs.


Subject(s)
Astrocytoma , Brain Stem Neoplasms , Circulating Tumor DNA , Diffuse Intrinsic Pontine Glioma , Glioma , Biology , Biomarkers , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/metabolism , Brain Stem Neoplasms/therapy , Child , Circulating Tumor DNA/genetics , Diffuse Intrinsic Pontine Glioma/genetics , Female , Genomic Instability , Glioma/genetics , Glioma/metabolism , Glioma/therapy , Humans , Young Adult
9.
Article in English | MEDLINE | ID: mdl-35466328

ABSTRACT

There is growing interest in the development of interventions (e.g., drugs, diets, dietary supplements, behavioral therapies, etc.) that can enhance health during the aging process, prevent or delay multiple age-related diseases, and ultimately extend lifespan. However, proving that such 'geroprotectors' do what they are hypothesized to do in relevant clinical trials is not trivial. We briefly discuss some of the more salient issues surrounding the design and interpretation of clinical trials of geroprotectors, including, importantly, how one defines a geroprotector. We also discuss whether emerging surrogate endpoints, such as epigenetic clocks, should be treated as primary or secondary endpoints in such trials. Simply put, geroprotectors should provide overt health and disease prevention benefits but the time-dependent relationships between epigenetic clocks and health-related phenomena are complex and in need of further scrutiny. Therefore, studies that enable understanding of the relationships between epigenetic clocks and disease processes while simultaneously testing the efficacy of a candidate geroprotector are crucial to move the field forward.

10.
JCO Precis Oncol ; 6: e2100239, 2022 03.
Article in English | MEDLINE | ID: mdl-35357903

ABSTRACT

PURPOSE: Hyperthermic intraperitoneal chemotherapy (HIPEC) confers a survival benefit in epithelial ovarian cancer (EOC) and in preclinical models. However, the molecular changes induced by HIPEC have not been corroborated in humans. PATIENTS AND METHODS: A feasibility trial evaluated clinical and safety outcomes of HIPEC with cisplatin during optimal cytoreductive surgery (CRS) in patients with EOC diagnosed with stage III, IV, or recurrent EOC. Pre- and post-HIPEC biopsies were comprehensively profiled with genomic and transcriptomic sequencing to identify mutational and RNAseq signatures correlating with response; the tumor microenvironment was profiled to identify potential immune biomarkers; and transcriptional signatures of tumors and normal samples before and after HIPEC were compared to investigate HIPEC-induced acute transcriptional changes. RESULTS: Thirty-five patients had HIPEC at the time of optimal CRS; all patients had optimal CRS. The median progression-free survival (PFS) was 24.7 months for primary patients and 22.4 for recurrent patients. There were no grade 4 or 5 adverse events. Anemia was the most common grade 3 adverse event (43%). Hierarchical cluster analyses identified distinct transcriptomic signatures of good versus poor responders to HIPEC correlating with a PFS of 29.9 versus 7.3 months, respectively. Among good responders, significant HIPEC-induced molecular changes included immune pathway upregulation and DNA repair pathway downregulation. Within cancer islands, % programmed cell death protein 1 expression in CD8+ T cells significantly increased after HIPEC. An exceptional responder (PFS 58 months) demonstrated the highest programmed cell death protein 1 increase. Heat shock proteins comprised the top differentially upregulated genes in HIPEC-treated tumors. CONCLUSION: Distinct transcriptomic signatures identify responders to HIPEC, and preclinical model findings are confirmed for the first time in a human cohort.


Subject(s)
Carcinoma, Ovarian Epithelial , Hyperthermic Intraperitoneal Chemotherapy , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/drug therapy , Feasibility Studies , Female , Humans , Hyperthermic Intraperitoneal Chemotherapy/adverse effects , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/drug therapy , Tumor Microenvironment
11.
Biology (Basel) ; 10(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34571817

ABSTRACT

The RNA-binding protein HuD (a.k.a., ELAVL4) is involved in neuronal development and synaptic plasticity mechanisms, including addiction-related processes such as cocaine conditioned-place preference (CPP) and food reward. The most studied function of this protein is mRNA stabilization; however, we have recently shown that HuD also regulates the levels of circular RNAs (circRNAs) in neurons. To examine the role of HuD in the control of coding and non-coding RNA networks associated with substance use, we identified sets of differentially expressed mRNAs, circRNAs and miRNAs in the striatum of HuD knockout (KO) mice. Our findings indicate that significantly downregulated mRNAs are enriched in biological pathways related to cell morphology and behavior. Furthermore, deletion of HuD altered the levels of 15 miRNAs associated with drug seeking. Using these sets of data, we predicted that a large number of upregulated miRNAs form competing endogenous RNA (ceRNA) networks with circRNAs and mRNAs associated with the neuronal development and synaptic plasticity proteins LSAMP and MARK3. Additionally, several downregulated miRNAs form ceRNA networks with mRNAs and circRNAs from MEF2D, PIK3R3, PTRPM and other neuronal proteins. Together, our results indicate that HuD regulates ceRNA networks controlling the levels of mRNAs associated with neuronal differentiation and synaptic physiology.

12.
Sci Rep ; 11(1): 10740, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031440

ABSTRACT

The robust detection of disease-associated splice events from RNAseq data is challenging due to the potential confounding effect of gene expression levels and the often limited number of patients with relevant RNAseq data. Here we present a novel statistical approach to splicing outlier detection and differential splicing analysis. Our approach tests for differences in the percentages of sequence reads representing local splice events. We describe a software package called Bisbee which can predict the protein-level effect of splice alterations, a key feature lacking in many other splicing analysis resources. We leverage Bisbee's prediction of protein level effects as a benchmark of its capabilities using matched sets of RNAseq and mass spectrometry data from normal tissues. Bisbee exhibits improved sensitivity and specificity over existing approaches and can be used to identify tissue-specific splice variants whose protein-level expression can be confirmed by mass spectrometry. We also applied Bisbee to assess evidence for a pathogenic splicing variant contributing to a rare disease and to identify tumor-specific splice isoforms associated with an oncogenic mutation. Bisbee was able to rediscover previously validated results in both of these cases and also identify common tumor-associated splice isoforms replicated in two independent melanoma datasets.


Subject(s)
Alternative Splicing , Melanoma/genetics , Proto-Oncogene Proteins/metabolism , Sequence Analysis, RNA/methods , Computational Biology/methods , Gene Expression Profiling , Humans , Mass Spectrometry , Melanoma/metabolism , Mutation , Organ Specificity , Proto-Oncogene Proteins/genetics , Software
13.
PLoS One ; 16(4): e0248097, 2021.
Article in English | MEDLINE | ID: mdl-33826614

ABSTRACT

Although combination BRAF and MEK inhibitors are highly effective for the 40-50% of cutaneous metastatic melanomas harboring BRAFV600 mutations, targeted agents have been ineffective for BRAFV600wild-type (wt) metastatic melanomas. The SU2C Genomics-Enabled Medicine for Melanoma Trial utilized a Simon two-stage optimal design to assess whether comprehensive genomic profiling improves selection of molecular-based therapies for BRAFV600wt metastatic melanoma patients who had progressed on standard-of-care therapy, which may include immunotherapy. Of the response-evaluable patients, binimetinib was selected for 20 patients randomized to the genomics-enabled arm, and nine were treated on the alternate treatment arm. Response rates for 27 patients treated with targeted recommendations included one (4%) partial response, 18 (67%) with stable disease, and eight (30%) with progressive disease. Post-trial genomic and protein pathway activation mapping identified additional drug classes that may be considered for future studies. Our results highlight the complexity and heterogeneity of metastatic melanomas, as well as how the lack of response in this trial may be associated with limitations including monotherapy drug selection and the dearth of available single and combination molecularly-driven therapies to treat BRAFV600wt metastatic melanomas.


Subject(s)
Benzimidazoles/administration & dosage , Genomics , Melanoma , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Adult , Aged , Female , Humans , Male , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Middle Aged , Neoplasm Metastasis , Pilot Projects , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
14.
Am J Med Genet A ; 185(5): 1532-1537, 2021 05.
Article in English | MEDLINE | ID: mdl-33569883

ABSTRACT

The 22q11.2 deletion syndrome (22q11.2 DS) is the most common deletion syndrome in humans. In most cases, it occurs de novo. A rare family of three with 22q11.2 deletion syndrome (22q11.2 DS) resulting from an unbalanced 18q;22q translocation is reported here. Their deletion region is atypical in that it includes only 26 of the 36 genes in the minimal critical 22q11.2 DS region but it involves the loss of the centromeric 22q region and the entire p arm. The deletion region overlaps with seven other rare atypical cases; common to all cases was the loss of a region including SEPT5-GP1BB proximally and most of ARVCF distally. Interrogation of the deleted 22q region proximal to the canonical 22q11.2 deletion region in the DECIPHER database showed seven cases with isolated or combined traits of 22q11.2 DS, including three with clefts. The phenotypes in the present family thus may result from the loss of a subset of genes in the critical region, or alternatively the loss of other genes or sequences in the proximal 22q deletion region, or interactive effects among these. Despite the identical deletion locus in the three affected family members, expression of the 22q11.2 DS traits differed substantially among them. These three related cases thus contribute to knowledge of 22q11.2 DS in that their unusual deletion locus co-occurred with the cardinal features of the syndrome while their identical deletions are associated with variable phenotypic expression.


Subject(s)
Cell Cycle Proteins/genetics , DiGeorge Syndrome/genetics , Platelet Glycoprotein GPIb-IX Complex/genetics , Septins/genetics , Translocation, Genetic/genetics , Adolescent , Adult , Child , Chromosome Deletion , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 22/genetics , DiGeorge Syndrome/pathology , Female , Genetic Predisposition to Disease , Humans , Male , Phenotype , Young Adult
15.
Biol Methods Protoc ; 5(1): bpaa010, 2020.
Article in English | MEDLINE | ID: mdl-32793805

ABSTRACT

Circular RNAs (circRNAs) are evolutionarily conserved RNA species that are formed when exons "back-splice" to each other. Current computational algorithms to detect these back-splicing junctions produce divergent results, and hence there is a need for a method to distinguish true-positive circRNAs. To this end, we developed Assembly based CircRNA Validator (ACValidator) for in silico verification of circRNAs. ACValidator extracts reads from a user-defined window on either side of a circRNA junction and assembles them to generate contigs. These contigs are aligned against the circRNA sequence to find contigs spanning the back-spliced junction. When evaluated on simulated datasets, ACValidator achieved over ∼80% sensitivity on datasets with an average of 10 circRNA-supporting reads and with read lengths of at least 100 bp. In experimental datasets, ACValidator produced higher verification percentages for samples treated with ribonuclease R compared to nontreated samples. Our workflow is applicable to non-polyA-selected RNAseq datasets and can also be used as a candidate selection strategy for prioritizing experimental validations. All workflow scripts are freely accessible on our GitHub page https://github.com/tgen/ACValidator along with detailed instructions to set up and run ACValidator.

16.
Neurooncol Adv ; 2(1): vdaa078, 2020.
Article in English | MEDLINE | ID: mdl-32743548

ABSTRACT

BACKGROUND: Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions. METHODS: Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination with investigational clinical trial regimens. RESULTS: Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis revealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcriptional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent NE regions. CONCLUSIONS: Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.

18.
Ear Hear ; 41(4): 983-989, 2020.
Article in English | MEDLINE | ID: mdl-31985533

ABSTRACT

OBJECTIVE: A small subset of children with congenital hearing loss have abnormal cochleovestibular nerves (i.e., absent, aplastic, or deficient cochlear nerves), with largely unknown etiology. Our objective was to investigate the underlying pathways and identify novel genetic variants responsible for cochleovestibular malformations and nerve abnormalities. It is our hypothesis that several cochleovestibular nerve abnormalities might share common causative pathways. DESIGN: We used a family-based exome sequencing approach to study 12 children with known rare inner ear and/or cochleovestibular nerve malformations. RESULTS: Our results highlight a diverse molecular etiology and suggest that genes important in the developing otic vesicle and cranial neural crest, e.g., MASP1, GREB1L, SIX1, TAF1, are likely to underlie inner ear and/or cochleovestibular nerve malformations. CONCLUSIONS: We show that several cochleovestibular nerve malformations are neurocristopathies, which is consistent with the fact that cochleovestibular nerve development is based on otic placode-derived neurons in close association with neural crest-derived glia cells. In addition, we suggest potential genetic markers for more severely affected phenotypes, which may help prognosticate individual cochlear implantation outcomes. Developing better strategies for identifying which children with abnormal nerves will benefit from a cochlear implantation is crucial, as outcomes are usually far less robust and extremely variable in this population, and current neuroimaging and electrophysiologic parameters cannot accurately predict outcomes. Identification of a suitable treatment early will reduce the use of multiple interventions during the time-sensitive period for language development.


Subject(s)
Cochlear Implantation , Deafness , Ear, Inner , Hearing Loss, Sensorineural , Cochlear Nerve , Female , Hearing Loss, Sensorineural/genetics , Homeodomain Proteins , Humans , Infant , Male
19.
Oncologist ; 25(1): e60-e67, 2020 01.
Article in English | MEDLINE | ID: mdl-31391296

ABSTRACT

BACKGROUND: Molecular analysis has revealed four subtypes of pancreatic ductal adenocarcinoma (PDAC). One subtype identified for the presence of DNA damage repair deficiency can be targeted therapeutically with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib. We performed a single institution retrospective analysis of treatment response in patients with PDAC treated with olaparib who have DNA damage repair deficiency mutations. SUBJECTS, MATERIALS, AND METHODS: Patients with germline or somatic mutations involving the DNA repair pathway were identified and treated with olaparib. The primary objective was to examine the objective response rate (ORR). The secondary objectives were assessing tolerability, overall survival, and change in cancer antigen 19-9. Quantitative texture analysis (QTA) was evaluated from CT scans to explore imaging biomarkers. RESULTS: Thirteen individuals with metastatic PDAC were treated with Olaparib. The ORR to Olaparib was 23%. Median overall survival (OS) was 16.47 months. Four of seven patients with BRCA mutations had an effect on RAD51 binding, with a median OS of 24.60 months. Exploratory analysis of index lesions using QTA revealed correlations between lesion texture and OS (hepatic lesion tumor texture correlation coefficient [CC], 0.683, p = .042) and time on olaparib (primary pancreatic lesion tumor texture CC, 0.778, p = .023). CONCLUSION: In individuals with metastatic PDAC who have mutations involved in DNA repair, Olaparib may provide clinical benefit. BRCA mutations affecting RAD51 binding domains translated to improved median OS. QTA of individual tumors may allow for additional information that predicts outcomes to treatment with PARP inhibitors. IMPLICATIONS FOR PRACTICE: Pursuing germline and somatic DNA sequencing in individuals with pancreatic ductal adenocarcinoma may yield abnormalities in DNA repair pathways. These individuals may receive benefit with poly (ADP-ribose) polymerase (PARP) inhibition. Radiomics and deep sequencing analysis may yet uncover additional information that may predict outcome to treatment with PARP inhibitors.


Subject(s)
DNA Repair/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Adult , Aged , Humans , Middle Aged , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Retrospective Studies
20.
J Vis Exp ; (153)2019 11 14.
Article in English | MEDLINE | ID: mdl-31789321

ABSTRACT

Circular RNAs (circRNAs) are a class of non-coding RNAs involved in functions including micro-RNA (miRNA) regulation, mediation of protein-protein interactions, and regulation of parental gene transcription. In classical next generation RNA sequencing (RNA-seq), circRNAs are typically overlooked as a result of poly-A selection during construction of mRNA libraries, or are found at very low abundance, and are therefore difficult to isolate and detect. Here, a circRNA library construction protocol was optimized by comparing library preparation kits, pre-treatment options and various total RNA input amounts. Two commercially available whole transcriptome library preparation kits, with and without RNase R pre-treatment, and using variable amounts of total RNA input (1 to 4 µg), were tested. Lastly, multiple tissue types; including liver, lung, lymph node, and pancreas; as well as multiple brain regions; including the cerebellum, inferior parietal lobe, middle temporal gyrus, occipital cortex, and superior frontal gyrus; were compared to evaluate circRNA abundance across tissue types. Analysis of the generated RNA-seq data using six different circRNA detection tools (find_circ, CIRI, Mapsplice, KNIFE, DCC, and CIRCexplorer) revealed that a stranded total RNA library preparation kit with RNase R pre-treatment and 4 µg RNA input is the optimal method for identifying the highest relative number of circRNAs. Consistent with previous findings, the highest enrichment of circRNAs was observed in brain tissues compared to other tissue types.


Subject(s)
Brain/physiology , RNA, Circular/genetics , Sequence Analysis, RNA/methods , Base Sequence , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , Transcriptome/genetics , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...