Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Plant J ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804089

ABSTRACT

The successful interaction between pollen and stigma is a critical process for plant sexual reproduction, involving a series of intricate molecular and physiological events. After self-compatible pollination, a significant reduction in reactive oxygen species (ROS) production has been observed in stigmas, which is essential for pollen grain rehydration and subsequent pollen tube growth. Several scavenging enzymes tightly regulate ROS homeostasis. However, the potential role of these ROS-scavenging enzymes in the pollen-stigma interaction in Brassica napus remains unclear. Here, we showed that the activity of ascorbate peroxidase (APX), an enzyme that plays a crucial role in the detoxification of hydrogen peroxide (H2O2), was modulated depending on the compatibility of pollination in B. napus. We then identified stigma-expressed APX1s and generated pentuple mutants of APX1s using CRISPR/Cas9 technology. After compatible pollination, the BnaAPX1 pentuple mutants accumulated higher levels of H2O2 in the stigma, while the overexpression of BnaA09.APX1 resulted in lower levels of H2O2. Furthermore, the knockout of BnaAPX1 delayed the compatible response-mediated pollen rehydration and germination, which was consistent with the effects of a specific APX inhibitor, ρ-Aminophenol, on compatible pollination. In contrast, the overexpression of BnaA09.APX1 accelerated pollen rehydration and germination after both compatible and incompatible pollinations. However, delaying and promoting pollen rehydration and germination did not affect the seed set after compatible and incompatible pollination in APX1 pentuple mutants and overexpression lines, respectively. Our results demonstrate the fundamental role of BnaAPX1 in pollen rehydration and germination by regulating ROS homeostasis during the pollen-stigma interaction in B. napus.

2.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748808

ABSTRACT

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Subject(s)
Carcinoma, Squamous Cell , Extracellular Matrix , Hydrogels , Organoids , Uterine Cervical Neoplasms , Humans , Female , Organoids/metabolism , Organoids/pathology , Organoids/drug effects , Extracellular Matrix/metabolism , Hydrogels/chemistry , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cervix Uteri/pathology , Cervix Uteri/metabolism , Tumor Microenvironment , Signal Transduction , Animals , Proteomics/methods , Mice
3.
J Hazard Mater ; 473: 134691, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788584

ABSTRACT

Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.


Subject(s)
Adenosine , Dopaminergic Neurons , Ferroptosis , Mice, Inbred C57BL , Nanoparticles , Parkinson Disease , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Ferroptosis/drug effects , Adenosine/analogs & derivatives , Parkinson Disease/genetics , Parkinson Disease/metabolism , Nanoparticles/toxicity , Nanoparticles/chemistry , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Male , Methylation/drug effects , Mice , Reactive Oxygen Species/metabolism , Humans , RNA , RNA Methylation
4.
Plant Sci ; 345: 112116, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750797

ABSTRACT

Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.


Subject(s)
Brassica napus , Plant Proteins , Sodium Chloride , Brassica napus/genetics , Brassica napus/physiology , Brassica napus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Self-Incompatibility in Flowering Plants/genetics , Gene Expression Regulation, Plant , Pollination
5.
Ecotoxicol Environ Saf ; 275: 116257, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564871

ABSTRACT

BACKGROUND: Growing evidence has revealed the impacts of exposure to fine particulate matter (PM2.5) and dysbiosis of gut microbiota on neuropsychiatric disorders, but the causal inference remains controversial due to residual confounders in observational studies. METHODS: This study aimed to examine the causal effects of exposure to PM2.5 on 4 major neuropsychiatric disorders (number of cases = 18,381 for autism spectrum disorder [ASD], 38,691 for attention deficit hyperactivity disorder [ADHD], 67,390 for schizophrenia, and 21,982 cases for Alzheimer's disease [AD]), and the mediation pathway through gut microbiota. Two-sample Mendelian randomization (MR) analyses were performed, in which genetic instruments were identified from genome-wide association studies (GWASs). The included GWASs were available from (1) MRC Integrative Epidemiology Unit (MRC-IEU) for PM2.5, PMcoarse, PM10, and NOX; (2) the Psychiatric Genomics Consortium (PGC) for ASD, ADHD, and schizophrenia; (3) MRC-IEU for AD; and (4) MiBioGen for gut microbiota. Multivariable MR analyses were conducted to adjust for exposure to NOX, PMcoarse, and PM10. We also examined the mediation effects of gut microbiota in the associations between PM2.5 exposure levels and neuropsychiatric disorders, using two-step MR analyses. RESULTS: Each 1 standard deviation (1.06 ug/m3) increment in PM2.5 concentrations was associated with elevated risk of ASD (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.00-2.02), ADHD (1.51, 1.15-1.98), schizophrenia (1.47, 1.15-1.87), and AD (1.57, 1.16-2.12). For all the 4 neurodevelopmental disorders, the results were robust under various sensitivity analyses, while the MR-Egger method yielded non-significant outcomes. The associations remained significant for all the 4 neuropsychiatric disorders after adjusting for PMcoarse, while non-significant after adjusting for NOX and PM10. The effects of PM2.5 exposure on ADHD and schizophrenia were partially mediated by Lachnospiraceae and Barnesiella, with the proportions ranging from 8.31% to 15.77%. CONCLUSIONS: This study suggested that exposure to PM2.5 would increase the risk of neuropsychiatric disorders, partially by influencing the profile of gut microbiota. Comprehensive regulations on air pollutants are needed to help prevent neuropsychiatric disorders.


Subject(s)
Alzheimer Disease , Autism Spectrum Disorder , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Particulate Matter/adverse effects
6.
Immunology ; 172(3): 375-391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38471664

ABSTRACT

Persistent human papillomavirus (HPV) infection is associated with multiple malignancies. Developing therapeutic vaccines to eliminate HPV-infected and malignant cells holds significant value. In this study, we introduced a lipid nanoparticle encapsulated mRNA vaccine expressing tHA-mE7-mE6. Mutations were introduced into E6 and E7 of HPV to eliminate their tumourigenicity. A truncated influenza haemagglutinin protein (tHA), which binds to the CD209 receptor on the surface of dendritic cells (DCs), was fused with mE7-mE6 in order to allow efficient uptake of antigen by antigen presenting cells. The tHA-mE7-mE6 (mRNA) showed higher therapeutic efficacy than mE7-mE6 (mRNA) in an E6 and E7+ tumour model. The treatment resulted in complete tumour regression and prevented tumour formation. Strong CD8+ T-cell immune response was induced, contributing to preventing and curing of E6 and E7+ tumour. Antigen-specific CD8+ T were found in spleens, peripheral blood and in tumours. In addition, the tumour infiltration of DC and NK cells were increased post therapy. In conclusion, this study described a therapeutic mRNA vaccine inducing strong anti-tumour immunity in peripheral and in tumour microenvironment, holding promising potential to treat HPV-induced cancer and to prevent cancer recurrence.


Subject(s)
Cancer Vaccines , Dendritic Cells , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Papillomavirus Infections , Papillomavirus Vaccines , mRNA Vaccines , Animals , Papillomavirus Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus E7 Proteins/immunology , Cancer Vaccines/immunology , Oncogene Proteins, Viral/immunology , Oncogene Proteins, Viral/genetics , Papillomavirus Vaccines/immunology , Dendritic Cells/immunology , Humans , Mice , Female , CD8-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Nanoparticles , Antigen-Presenting Cells/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Killer Cells, Natural/immunology , Repressor Proteins/immunology , Repressor Proteins/genetics , Neoplasms/therapy , Neoplasms/immunology , RNA, Messenger/genetics , Cell Line, Tumor , Liposomes
7.
New Phytol ; 241(4): 1690-1707, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037276

ABSTRACT

Self-incompatibility plays a vital role in angiosperms, by preventing inbreeding depression and maintaining genetic diversity within populations. Following polyploidization, many angiosperm species transition from self-incompatibility to self-compatibility. Here, we investigated the S-locus in Brassicaceae and identified distinct origins for the sRNA loci, SMI and SMI2 (SCR Methylation Inducer 1 and 2), within the S-locus. The SMI loci were found to be widespread in Cruciferae, whereas the SMI2 loci were exclusive to Brassica species. Additionally, we discovered four major S-haplotypes (BnS-1, BnS-6, BnS-7, and BnS-1300) in rapeseed. Overexpression of BnSMI-1 in self-incompatible Brassica napus ('S-70S1300S6 ') resulted in a significant increase in DNA methylation in the promoter regions of BnSCR-6 and BnSCR-1300, leading to self-compatibility. Conversely, by overexpressing a point mutation of BnSmi-1 in the 'S-70S1300S6 ' line, we observed lower levels of DNA methylation in BnSCR-6 and BnSCR-1300 promoters. Furthermore, the overexpression of BnSMI2-1300 in the 'SI-326S7S6 ' line inhibited the expression of BnSCR-7 through transcriptional repression of the Smi2 sRNA from the BnS-1300 haplotype. Our study demonstrates that the self-compatibility of rapeseed is determined by S-locus sRNA-mediated silencing of SCR after polyploidization, which helps to further breed self-incompatible or self-compatible rapeseed lines, thereby facilitating the utilization of heterosis.


Subject(s)
Brassica napus , Brassica , RNA, Small Untranslated , Brassica napus/genetics , Brassica napus/metabolism , Plant Breeding , Brassica/genetics , Promoter Regions, Genetic/genetics , RNA, Small Untranslated/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Mol Neurobiol ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917301

ABSTRACT

Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Triggering receptor expressed on myeloid cells 2 (TREM2) confers strong neuroprotective effects in PD by regulating the phenotype of microglia. Recent studies suggest that TREM2 regulates high glucose-induced microglial inflammation through the NLRP3 signaling pathway. This study aimed to investigate the effect of TREM2 on NLRP3 inflammasome activation and neuroinflammation in PD. Mice were injected with AAV-TREM2-shRNA into both sides of the substantia nigra using a stereotactic injection method, followed by intraperitoneal injection of MPTP to establish chronic PD mouse model. Behavioral assessments including the pole test and rotarod test were conducted to evaluate the effects of TREM2 deficiency on MPTP-induced motor dysfunction. Immunohistochemistry of TREM2 and tyrosine hydroxylase (TH), immunohistochemistry and immunofluorescence Iba1, Western blot of NLRP3 inflammasome and its downstream inflammatory factors IL-1ß and IL-18, and the key pyroptosis factors GSDMD and GSDMD-N were performed to explore the effect of TREM2 on NLRP3 inflammasome and neuroinflammation. In an in vitro experiment, lentivirus was used to interfere with the expression of TREM2 in BV2 microglia, and then lipopolysaccharide (LPS) and adenopterin nucleoside triphosphate (ATP) were used to stimulate inflammation to construct a cellular inflammation model. The expression differences of NLRP3 inflammasome and its components were detected by qPCR and Western blot. In vivo, TREM2 knockdown aggravated the loss of dopaminergic neuron and the decline of motor function. After TREM2 knockdown, the number of activated microglia was significantly increased, and the expression of cleaved caspase-1, NLRP3 inflammasome, IL-1ß, GSDMD, and GSDMD-N was increased. In vitro, TREM2 knockdown aggravated the inflammatory response of BV2 cells stimulated by LPS and promoted the activation of NLRP3 inflammasome through the NF-κB pathway. In addition, TREM2 knockdown also promoted the expression of TLR4/MyD88, an upstream factor of the NF-κB pathway. Our vivo and vitro data showed that TREM2 knockdown promoted NLRP3 inflammasome activation and downstream inflammatory response, promoted pyroptosis, and aggravated dopaminergic neuron loss. TREM2 acts as an anti-inflammatory in PD through the TLR4/MyD88/NF-κB pathway, which extends previous findings and supports the notion that TREM2 ameliorates neuroinflammation in PD.

9.
Mol Breed ; 43(4): 27, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37313529

ABSTRACT

Pollen tube (PT) growth towards the micropyle is critical for successful double fertilization. However, the mechanism of micropyle-directed PT growth is still unclear in Brassica napus. In this study, two aspartate proteases, BnaAP36s and BnaAP39s, were identified in B. napus. BnaAP36s and BnaAP39s were localized to the plasma membrane. The homologues of BnaAP36 and BnaAP39 were highly expressed in flower organs, especially in the anther. Sextuple and double mutants of BnaAP36s and BnaAP39s were then generated using CRISPR/Cas9 technology. Compared to WT, the seed-set of cr-bnaap36 and cr-bnaap39 mutants was reduced by 50% and 60%, respectively. The reduction in seed-set was also found when cr-bnaap36 and cr-bnaap39 were used as the female parent in a reciprocal cross assay. Like WT, cr-bnaap36 and cr-bnaap39 pollen were able to germinate and the relative PTs were able to elongate in style. Approximately 36% and 33% of cr-bnaap36 and cr-bnaap39 PTs, respectively, failed to grow towards the micropyle, indicating that BnaAP36s and BnaAP39s are essential for micropyle-directed PT growth. Furthermore, Alexander's staining showed that 10% of cr-bnaap39 pollen grains were aborted, but not cr-bnaap36, suggesting that BnaAP39s may also affect microspore development. These results suggest that BnaAP36s and BnaAP39s play a critical role in the growth of micropyle-directed PTs in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01377-1.

10.
J Control Release ; 356: 691-701, 2023 04.
Article in English | MEDLINE | ID: mdl-36933699

ABSTRACT

Resistance to the chemotherapeutic agent cisplatin (DDP) is the primary reason for invalid chemotherapy of ovarian cancer. Given the complex mechanisms underlying chemo-resistance, the design of combination therapies based on blocking multiple mechanisms is a rationale to synergistically elevate therapeutic effect for effectively overcoming cancer chemo-resistance. Herein, we demonstrated a multifunctional nanoparticle (DDP-Ola@HR), which could simultaneously co-deliver DDP and Olaparib (Ola, DNA damage repair inhibitor) using targeted ligand cRGD peptide modified with heparin (HR) as nanocarrier, enabling the concurrent tackling of multiple resistance mechanisms to effectively inhibit the growth and metastasis of DDP-resistant ovarian cancer. In combination strategy, heparin could suppress the function of multidrug resistance-associated protein 2 (MRP2) and P-glycoprotein (P-gp) to promote the intracellular accumulation of DDP and Ola by specifically binding with heparanase (HPSE) to down-regulate PI3K/AKT/mTOR signaling pathway, and simultaneously served as a carrier combined with Ola to synergistically enhance the anti-proliferation ability of DDP for resistant ovarian cancer, thus achieving great therapeutic efficacy. Our DDP-Ola@HR could provide a simple and multifunctional combination strategy to trigger an anticipated cascading effect, thus effectively overcoming the chemo-resistance of ovarian cancer.


Subject(s)
Antineoplastic Agents , Heparin , Nanoparticles , Ovarian Neoplasms , Female , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases
11.
Front Genet ; 14: 1067666, 2023.
Article in English | MEDLINE | ID: mdl-36816023

ABSTRACT

Introduction: Immune cell infiltration and metabolic reprogramming may have great impact on the tumorigenesis and progression of malignancies. The interaction between these two factors in cervical cancer remains to be clarified. Here we constructed a gene set containing immune and metabolism related genes and we applied this gene set to molecular subtyping of cervical cancer. Methods: Bulk sequencing and single-cell sequencing data were downloaded from the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database respectively. Immune and metabolism related genes were collected from Immport and Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Unsupervised consensus clustering was performed to identify the molecular subtypes. Cibersort was applied to evaluate the immune cells infiltration status. Differential expression analysis and Gene set enrichment analysis (GSEA) were performed to characterize the molecular pattern of different subtypes. Multivariate Cox regression analysis was used for prognosis prediction model construction and receiver operating characteristic (ROC) curve was used for performance evaluation. The hub genes in the model were verified in single-cell sequencing dataset and clinical specimens. In vitro experiments were performed to validate the findings in our research. Results: Three subtypes were identified with prognostic implications. C1 subgroup was in an immunosuppressive state with activation of mitochondrial cytochrome P450 metabolism, C2 had poor immune cells infiltration and was characterized by tRNA anabolism, and the C3 subgroup was in an inflammatory state with activation of aromatic amino acid synthesis. The area under the ROC curve of the constructed model was 0.8, which showed better performance than clinical features. IMPDH1 was found to be significantly upregulated in tumor tissue and it was demonstrated that IMPDH1 could be a novel therapeutic target in vitro. Discussion: In summary, our findings suggested novel molecular subtypes of cervical cancer with distinct immunometabolic profiles and uncovered a novel therapeutic target.

12.
J Med Genet ; 60(2): 154-162, 2023 02.
Article in English | MEDLINE | ID: mdl-35534203

ABSTRACT

BACKGROUND: Asthenozoospermia is a major factor contributing to male infertility. The mitochondrial sheath (MS), an important organelle in the midpiece of spermatozoa, is crucial to sperm motility. ARMC12 is a mitochondrial peripheral membrane protein. Deletion of Armc12 impairs the arrangement of MS and causes infertility in mice. However, the role of ARMC12 in human asthenozoospermia remains unknown. OBJECTIVE: To study the genetic defects in patients with asthenozoospermia. METHODS: A total of 125 patients with asthenozoospermia and 120 men with proven fertility were recruited. Whole-exome sequencing and Sanger sequencing were performed for genetic analysis. Papanicolaou staining, HE staining, immunofluorescent staining, transmission electron microscopy and field emission scanning electron microscopy were employed to observe the morphological and structural defects of the spermatozoa and testes. Armc12-knockout mice were generated using the CRISPR-Cas9 system. Intracytoplasmic sperm injection was used to treat the patients. RESULTS: Biallelic ARMC12 mutations were identified in three patients, including homozygous mutations in two siblings from a consanguineous family and compound heterozygous mutations in one sporadic patient. ARMC12 is mainly expressed in the midpiece of elongated and late spermatids in the human testis. The patients' spermatozoa displayed multiple midpiece defects, including absent MS and central pair, scattered or forked axoneme and incomplete plasma membrane. Spermatozoa from Armc12-/- mice showed parallel defects in the midpiece. Moreover, two patients were treated with intracytoplasmic sperm injection and achieved good outcomes. CONCLUSION: Our findings prove for the first time that defects in ARMC12 cause asthenozoospermia and multiple midpiece defects in humans.


Subject(s)
Armadillo Domain Proteins , Asthenozoospermia , Infertility, Male , Animals , Humans , Male , Mice , Asthenozoospermia/genetics , Infertility, Male/genetics , Mice, Knockout , Mutation , Semen , Sperm Motility/genetics , Spermatozoa , Testis , Armadillo Domain Proteins/genetics
13.
Bioact Mater ; 13: 179-190, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35224300

ABSTRACT

Beyond traditional endothelium-dependent vessel (EDV), vascular mimicry (VM) is another critical tumor angiogenesis that further forms in many malignant metastatic tumors. However, the existing anti-angiogenesis combined chemotherapeutics strategies are only efficient for the treatment of EDV-based subcutaneous tumors, but remain a great challenge for the treatment of in situ malignant metastatic tumor associated with EDV and VM. Here, we demonstrate a self-assembled nanoparticle (VE-DDP-Pro) featuring self-anti-EDV and -VM capacity enables to significantly enhance the treatment efficacy of cisplatin (DDP) against the growth and metastasis of ovarian cancer. The VE-DDP-Pro is constructed by patching DDP loaded cRGD-folate-heparin nanoparticles (VE) onto the surface of protamine (Pro) nanoparticle. We demonstrated the self-anti-angiogenesis capacity of VE-DDP-Pro was attributed to VE, which could significantly inhibit the formation of EDV and VM by regulating signaling pathway of MMP-2/VEGF, AKT/mTOR/MMP-2/Laminin and AKT/mTOR/EMT, facilitating chemotherapeutics to effectively suppress the development and metastasis of ovarian cancer. Thus, combing with the chemotherapeutics effectiveness of DDP, the VE-DDP-Pro can significantly enhance treatment efficacy and prolong median survival of mice with metastatic ovarian cancer. We believe our self-assembled nanoparticles integrating the anti-EDV and anti-VM capacity provide a new preclinical sight to enhance the efficacy of chemotherapeutics for the treatment malignant metastasis tumor.

14.
Adv Sci (Weinh) ; 9(20): e2105274, 2022 07.
Article in English | MEDLINE | ID: mdl-35187842

ABSTRACT

Multidrug resistance remains a great challenge for cancer chemotherapy. Herein, a biomimetic drug delivery system based on lemon-derived extracellular vesicles (EVs) nanodrugs (marked with heparin-cRGD-EVs-doxorubicin (HRED)) is demonstrated, achieving highly efficient overcoming cancer multidrug resistance. The HRED is fabricated by modifying functional heparin-cRGD (HR) onto the surface of EVs and then by loading with doxorubicin (DOX). The obtained HRED enable to effectively enter DOX-resistant cancer cells by caveolin-mediated endocytosis (main), macropinocytosis (secondary), and clathrin-mediated endocytosis (last), exhibiting excellent cellular uptake capacity. The diversified endocytosis capacity of HRED can efficiently dissipate intracellular energy and meanwhile trigger downstream production reduction of adenosine triphosphate (ATP), leading to a significant reduction of drug efflux. Consequently, they show excellent anti-proliferation capacities to DOX-resistant ovarian cancer, ensuring the efficiently overcoming ovarian cancer multidrug resistance in vivo. The authors believe this strategy provides a new strategy by endocytosis triggered-energy dissipation and ATP production reduction to design drug delivery system for overcoming cancer multidrug resistance.


Subject(s)
Extracellular Vesicles , Nanoparticles , Ovarian Neoplasms , Adenosine Triphosphate/pharmacology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Endocytosis , Female , Heparin/pharmacology , Humans , Nanoparticles/therapeutic use , Ovarian Neoplasms/drug therapy
15.
Plants (Basel) ; 10(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34961286

ABSTRACT

Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The Brassica species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II S haplotype, named BrS-325, was identified in a pak choi line '325', which was responsible for the completely self-compatible phenotype. To obtain the entire S locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in B. rapa. S locus comparative analysis showed that the closest relatives to BrS-325 was BrS-60, and high sequence polymorphism existed in the S locus. Meanwhile, two duplicated SRKs (BrSRK-325a and BrSRK-325b) were distributed in the BrS-325 locus with opposite transcription directions. BrSRK-325b and BrSCR-325 were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II S haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II S haplotype BrS-325 in B. rapa. The complete SC phenotype of '325' showed the potential for practical breeding application value in B. rapa.

16.
Nano Lett ; 21(3): 1484-1492, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33475372

ABSTRACT

Existing nanoparticle-mediated drug delivery systems for glioma systemic chemotherapy remain a great challenge due to poor delivery efficiency resulting from the blood brain barrier/blood-(brain tumor) barrier (BBB/BBTB) and insufficient tumor penetration. Here, we demonstrate a distinct design by patching doxorubicin-loaded heparin-based nanoparticles (DNs) onto the surface of natural grapefruit extracellular vesicles (EVs), to fabricate biomimetic EV-DNs, achieving efficient drug delivery and thus significantly enhancing antiglioma efficacy. The patching strategy allows the unprecedented 4-fold drug loading capacity compared to traditional encapsulation for EVs. The biomimetic EV-DNs are enabled to bypass BBB/BBTB and penetrate into glioma tissues by receptor-mediated transcytosis and membrane fusion, greatly promoting cellular internalization and antiproliferation ability as well as extending circulation time. We demonstrate that a high-abundance accumulation of EV-DNs can be detected at glioma tissues, enabling the maximal brain tumor uptake of EV-DNs and great antiglioma efficacy in vivo.


Subject(s)
Brain Neoplasms , Citrus paradisi , Extracellular Vesicles , Glioma , Nanoparticles , Biomimetics , Brain Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin/therapeutic use , Drug Delivery Systems , Glioma/drug therapy , Heparin , Humans
17.
Theor Appl Genet ; 134(3): 909-921, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33392708

ABSTRACT

KEY MESSAGE: A single dominant powdery mildew resistance gene MlNFS10 was identified in wild emmer wheat and mapped within a 0.3cM genetic interval spanning a 2.1Mb physical interval on chromosome arm 4AL. Wheat powdery mildew caused by Blumeria graminis forma specialis tritici (Bgt) is a globally devastating disease. The use of powdery mildew resistance genes from wild relatives of wheat is an effective method of disease management. Our previous research has shown that disruptive ecological selection has driven the discrete adaptations of the wild emmer wheat population on the south facing slope (SFS) and north facing slope (NFS) at the microsite of "Evolution Canyon" at Mount Carmel, Israel and demonstrated that 16 accessions in the NFS population display high resistance to 11 powdery mildew isolates (collected from different wheat fields in China). Here, we constructed bi-parental population by crossing the accession NFS-10 (resistant to 22 Bgt races collected from China in seedling resistance screen) and the susceptible line SFS2-12. Genetic analysis indicated that NFS-10 carries a single dominant gene, temporarily designated MlNFS10. Ultimately, 13 markers were successfully located within the long arm of chromosome 4A, thereby delineating MlNFS10 to a 0.3 cM interval covering 2.1 Mb (729275816-731365462) in the Chinese Spring reference sequence. We identified disease resistance-associated genes based on the RNA-seq analysis of both parents. The tightly linked InDel marker XWsdau73447 and SSR marker XWsdau72928 were developed and used for marker-assisted selection when MlNFS10 was introgressed into a hexaploid wheat background. Therefore, MlNFS10 can be used for improvement of germplasm in breeding programs for powdery mildew resistant cultivars.


Subject(s)
Ascomycota/physiology , Chromosome Mapping/methods , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/genetics , Triticum/genetics , Chromosomes, Plant/genetics , Disease Resistance/immunology , Genetic Linkage , Genetic Markers , Plant Diseases/microbiology , Triticum/immunology , Triticum/microbiology
18.
Bull Environ Contam Toxicol ; 106(5): 715-726, 2021 May.
Article in English | MEDLINE | ID: mdl-33420800

ABSTRACT

Selenium is a trace element necessary for the growth of organisms. Moreover, selenium supplementation can improve the immunity and fertility of the body, as well as its ability to resist oxidation, tumors, heavy metals, and pathogenic microorganisms. However, owing to the duality of selenium, excessive selenium supplementation can cause certain toxic effects on the growth and development of the body and may even result in death in severe cases. At present, increasing attention is being paid to the development and utilization of selenium as a micronutrient, but its potential toxicity tends to be neglected. This study systematically reviews recent research on the toxicological effects of selenium, aiming to provide theoretical references for selenium toxicology-related research and theoretical support for the development of selenium-containing drugs, selenium-enriched dietary supplements, and selenium-enriched foods.


Subject(s)
Metals, Heavy , Pharmaceutical Preparations , Selenium , Trace Elements , Dietary Supplements , Micronutrients , Selenium/toxicity
19.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33079984

ABSTRACT

OBJECTIVE: We aimed to identify key susceptibility gene targets in multiple datasets generated from postmortem brains and blood of Parkinson's disease (PD) patients and healthy controls (HC). METHODS: We performed a multitiered analysis to integrate the gene expression data using multiple-gene chips from 244 human postmortem tissues. We identified hub node genes in the highly PD-related consensus module by constructing protein-protein interaction (PPI) networks. Next, we validated the top four interacting genes in 238 subjects (90 sporadic PD, 125 HC and 23 Parkinson's Plus Syndrome (PPS)). Utilizing multinomial logistic regression analysis (MLRA) and receiver operating characteristic (ROC), we analyzed the risk factors and diagnostic power for discriminating PD from HC and PPS. RESULTS: We identified 1333 genes that were significantly different between PD and HCs based on seven microarray datasets. The identified MEturquoise module is related to synaptic vesicle trafficking (SVT) dysfunction in PD (P < 0.05), and PPI analysis revealed that SVT genes PPP2CA, SYNJ1, NSF and PPP3CB were the top four hub node genes in MEturquoise (P < 0.001). The levels of these four genes in PD postmortem brains were lower than those in HC brains. We found lower blood levels of PPP2CA, SYNJ1 and NSF in PD compared with HC, and lower SYNJ1 in PD compared with PPS (P < 0.05). SYNJ1, negatively correlated to PD severity, displayed an excellent power to discriminating PD from HC and PPS. CONCLUSIONS: This study highlights that SVT genes, especially SYNJ1, may be promising markers in discriminating PD from HCs and PPS.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Nerve Tissue Proteins , Parkinson Disease , Protein Interaction Maps , Synaptic Vesicles , Autopsy , Biomarkers/metabolism , Female , Humans , Male , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synaptic Vesicles/genetics , Synaptic Vesicles/metabolism
20.
Med Sci Monit ; 26: e924498, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32684616

ABSTRACT

BACKGROUND Post-contrast acute kidney injury (PC-AKI) is a contributor to adverse outcomes after percutaneous coronary intervention (PCI). This study aimed to investigate whether fibrinogen-to-albumin ratio (FAR), a novel inflammation-based risk index, can predict the occurrence of PC-AKI in patients undergoing elective PCI. MATERIAL AND METHODS We retrospectively enrolled 291 patients who underwent elective PCI from June 2017 to June 2019. PC-AKI was defined as an increase in serum creatinine ≥0.3 mg/dL (≥26.5 µmol/L), or ≥1.5 times baseline within 48 to 72 hours after PCI. The area under the receiver-operating characteristic curve (AUC), continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were calculated to make comparison for PC-AKI prediction. RESULTS PC-AKI occurred in 43 patients (14.8%). FAR showed an AUC of 0.691 (95% confidence interval: 0.64-0.74; P<0.001) in predicting PC-AKI. In stepwise multivariable logistic regression, FAR was independently associated with the occurrence of PC-AKI along with hypertension, diabetes, hemoglobin, estimated glomerular filtration rate, and left ventricular ejection fraction. FAR significantly improved PC-AKI prediction over Mehran risk score in the continuous NRI and IDI, but not AUC. CONCLUSIONS FAR is independently associated with the occurrence of PC-AKI, and can significantly improve PC-AKI prediction over Mehran risk score in patients undergoing elective PCI.


Subject(s)
Acute Kidney Injury/metabolism , Albumins/metabolism , Fibrinogen/metabolism , Percutaneous Coronary Intervention/methods , Acute Kidney Injury/blood , Aged , Contrast Media , Creatinine/blood , Elective Surgical Procedures , Female , Glomerular Filtration Rate , Humans , Logistic Models , Male , Middle Aged , Percutaneous Coronary Intervention/adverse effects , Predictive Value of Tests , Retrospective Studies , Risk Factors , Stroke Volume , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...