Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Huan Jing Ke Xue ; 45(2): 909-919, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471929

ABSTRACT

Based on the typical city survey data and statistics of Guangdong Province, a 2018-based 3 km×3 km gridded greenhouse gas emissions inventory was developed for Guangdong Province using the combination of top-down and bottom-up emission factor methods. The inventory covered the CO2, CH4, and N2O emissions from energy, industrial processes, agriculture, land use change and forest, waste management, and indirect sources. The results showed that estimates for CO2, CH4, and N2O in Guangdong Province for the year 2018 were 8.5×108, 1.9×106, and 1.1×105 t, respectively, and 8.5×108, 4.0×107, and 3.4×107 t by equivalent carbon dioxide, totaling 9.2×108 t. CO2 was the main greenhouse gas in Guangdong Province, accounting for 92.0% of the total emissions. Energy and indirect sources were the main emission sources, accounting for 77.9% and 7.6%, respectively, totaling 85.5%. Spatial distributions illustrated that most grids were greenhouse gas emissions, whereas some others were greenhouse gas sinks; the greenhouse gas emissions were distributed mainly in the Pearl River Delta region and had certain characteristics of distribution along the road network and channels. The greenhouse gas grids of high emission were mainly the locations of high energy-consuming enterprises such as large power plants, steel mills, and cement plants.

2.
Huan Jing Ke Xue ; 44(11): 5915-5923, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973076

ABSTRACT

The printing industry has always been the key source of volatile organic compound(VOC) emissions in China. However, owing to the complexity of raw materials and processes, the fine emission inventory and its future emission reduction potential of VOCs from the printing industry have not been well characterized. In this study, the existing VOCs emission factors of the printing industry were improved, considering the neglected semi/intermediate VOCs(S/IVOCs). An emissions inventory of VOCs from the printing industry in the period of 2011-2020 in China was compiled. Through scenario analysis, the emission of VOCs under different scenarios in 2030 was predicted, and the emission reduction potential was analyzed. VOCs emissions from the printing industry in China increased first and then decreased in the period of 2011-2020. Compared with that in 2011, VOCs emissions increased by 29.6% in 2020, with an average annual growth rate of 3.0%. This was mainly due to the increasing consumption demand in the printing industry market and the lack of effective measures for integrated management of VOCs. The VOCs emission of the printing industry in China in 2020 was 861 Gg. Gravure printing and packaging processing were the two most important processes, accounting for 52.0% and 28.7%, respectively. Guangdong, Jiangsu, and Zhejiang were the largest contributors to VOC emissions, accounting for 44.12% of the total emissions. VOCs emissions of the printing industry in 2030 were 1187 Gg, 684 Gg, and 362 Gg for the baseline scenario, the general control scenario, and the strict control scenario, respectively. Compared to that in 2020, emissions under different control scenarios in 2030 increased by 37.9% and decreased by 20.6% and 57.9%, respectively. Gravure printing and packaging processing are still the focus of emission reduction.

3.
Huan Jing Ke Xue ; 44(10): 5418-5430, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827760

ABSTRACT

The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.


Subject(s)
Air Pollutants , Neoplasms , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Vehicle Emissions/analysis , Ozone/analysis , Toluene/analysis , Risk Assessment , Acetaldehyde/analysis , Formaldehyde/analysis , China
4.
Front Genet ; 14: 1260531, 2023.
Article in English | MEDLINE | ID: mdl-37811144

ABSTRACT

With the increasing throughput of modern sequencing instruments, the cost of storing and transmitting sequencing data has also increased dramatically. Although many tools have been developed to compress sequencing data, there is still a need to develop a compressor with a higher compression ratio. We present a two-step framework for compressing sequencing data in this paper. The first step is to repack original data into a binary stream, while the second step is to compress the stream with a LZMA encoder. We develop a new strategy to encode the original file into a LZMA highly compressed stream. In addition an FPGA-accelerated of LZMA was implemented to speedup the second step. As a demonstration, we present repaq as a lossless non-reference compressor of FASTQ format files. We introduced a multifile redundancy elimination method, which is very useful for compressing paired-end sequencing data. According to our test results, the compression ratio of repaq is much higher than other FASTQ compressors. For some deep sequencing data, the compression ratio of repaq can be higher than 25, almost four times of Gzip. The framework presented in this paper can also be applied to develop new tools for compressing other sequencing data. The open-source code of repaq is available at: https://github.com/OpenGene/repaq.

5.
Sci Total Environ ; 904: 166416, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659552

ABSTRACT

China became the world leader in crude oil processing capacity in 2021. However, petroleum refining generates significant volatile organic compound (VOC) emissions, and the composite source profile, source-specific emission factors, and emission inventories of VOCs in the petroleum refining industry remain poorly understood. In this study, we focused on Guangdong, China's major province for crude oil processing, and systematically evaluated the historical emissions and reduction of VOCs in the petroleum refining industry from 2001 to 2020. We accomplished this by establishing local source-specific emission factors and composite source profiles. Finally, we quantitatively assessed the potential impact of these emissions on ozone and secondary organic aerosol formation. Our results revealed that VOC emissions from the petroleum refining industry in Guangdong followed an increasing-then-decreasing trend from 2001 to 2020, peaking at 37.3 Gg in 2016 and declining to 18.7 Gg in 2020. Storage tanks and wastewater collection and treatment remained the two largest sources, accounting for 41.9 %-53.4 % and 20.6 %-27.5 % of total emissions, respectively. Initially, Guangzhou and Maoming made the most significant contributions, with Huizhou becoming a notable contributor after 2008. Emission reduction efforts for VOCs in Guangdong's petroleum refining industry began showing results in 2017, with an average annual VOC emission reduction of 21.5 Gg from 2017 to 2020 compared to the unabated scenario. Storage tanks, wastewater collection and treatment, and loading operations were the primary sources of emission reduction, with significant contributions from Maoming, Huizhou, and Guangzhou. Alkanes made the largest contribution to VOC emissions, while alkenes/alkynes and aromatics comprised the most significant portions of ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAP). We also estimated VOC emissions and reduction from petroleum refining for China from 2001 to 2020, and measures such as "one enterprise, one policy" and deep control strategies could reduce emissions by at least 103.9 Gg.

6.
Int Arch Occup Environ Health ; 96(6): 919-930, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37225876

ABSTRACT

PURPOSE: The Keokuk County Rural Health Study (KCRHS) is a longitudinal population-based study conducted in rural Iowa. A prior analysis of enrollment data identified an association of airflow obstruction with occupational exposures only among cigarette smokers. The current study used spirometry data from all three rounds to investigate whether level of forced expiratory volume in one second (FEV1) and longitudinal change in FEV1 were associated with occupational vapor-gas, dust, and fumes (VGDF) exposures, and whether these associations were modified by smoking. METHODS: This study sample comprised 1071 adult KCRHS participants with longitudinal data. A job-exposure matrix (JEM) was applied to participants' lifetime work histories to assign exposures to occupational VGDF. Mixed regression models of pre-bronchodilator FEV1 (millimeters, ml) were fit to test for associations with occupational exposures while adjusting for potential confounders. RESULTS: Mineral dust had the most consistent association with change in FEV1, including ever/never ( - 6.3 ml/year) and nearly every level of duration, intensity, and cumulative exposure. Because 92% of participants with mineral dust also had organic dust exposure, the results for mineral dust may be due to a combination of the two. An association of FEV1 level with fumes was observed for high intensity ( - 91.4 ml) among all participants, and limited to cigarette smokers with results of - 104.6 ml ever/never exposed, - 170.3 ml high duration, and - 172.4 ml high cumulative. CONCLUSION: The current findings suggest that mineral dust, possibly in combination with organic dust, and fumes exposure, especially among cigarette smokers, were risk factors for adverse FEV1 results.


Subject(s)
Occupational Diseases , Occupational Exposure , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Longitudinal Studies , Forced Expiratory Volume , Iowa/epidemiology , Rural Population , Occupational Exposure/adverse effects , Dust/analysis
7.
Huan Jing Ke Xue ; 44(5): 2461-2471, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177921

ABSTRACT

Ozone pollution is intensifying in China, and its related studies are weak in non-focus regions and non-focus cities. Here, we investigated the characteristics and sources of volatile organic compounds (VOCs) at three sampling sites in Zhanjiang. We analyzed 101 VOCs using a gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high-performance liquid chromatography (HPLC) using a Summa canister and DNPH adsorption tube. We calculated the ozone formation potential (OFP) of VOCs and used the positive matrix factorization (PMF) model for source apportionment. The results showed that the mean φ(TVOCs) was 1.28×10-7, and the dominant contributors were OVOCs (52%), followed by alkanes (36%), alkenes (7%), halogenated hydrocarbons (2.42%), aromatic hydrocarbons (1.61%), and alkynes (0.78%). The diurnal variation in VOCs was influenced by photochemical reactions; the ratio of aromatic hydrocarbons and alkanes was high in the morning and evening and low at noon, whereas OVOCs had a low ratio in the morning and noon and high in the evening, influenced by primary emissions and the upwind transport of pollutants. The OFP was 3.28×10-7, and the dominant species were formaldehyde, butene, n-butane, butanone, and acetaldehyde.The analysis of X/E values (characterizing the aging degree of air masses) and backward trajectories of air masses showed that during the sampling, when influenced by air masses from the south or southwest, X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport; when influenced by air masses from the east or southeast direction, X/E was large, and the air masses were fresh, and VOCs were mainly from local emissions. Six emission sources of VOCs, including industrial emissions, gasoline vehicle exhaust and gasoline evaporation, regional background and transport sources, biomass combustion, diesel vehicles and marine shipping emissions, and solvent use emission sources, were resolved using the PMF model, with contributions of 36.05%, 28.99%, 13.84%, 10.13%, 7.05%, and 3.95%, respectively.Zhanjiang should strengthen the supervision of formaldehyde, butene, n-butane and butanone, industry sources, and mobile sources as the focus of control.

8.
Sci Total Environ ; 866: 161295, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36592911

ABSTRACT

Printing industry is one of the most important sources of industrial volatile organic compound (VOC) emissions in China, and is thus a key industrial sector in terms of VOC control. However, process-based VOC emission and speciation from the printing industry have not been well identified, mainly owing to the poor emission factors (EFs) and diversity of source profiles. In this study, we systematically characterized process-based VOC emissions from the printing industry for the period of 2010-2019, through the establishment of improved emission factors and composite source profiles. VOC emissions from the printing industry were found to continuously increase from 2010 to 2018, reaching their maximum in 2018 at 939.8 Gg, but started to decrease afterwards. The substantial growth is driven by the large demand for ink and adhesive and the absence of effective control measures in the printing industry. The total VOC emissions and ozone formation potential (OFP) in China in 2019 were 916.1 Gg and 1834.5 Gg, respectively. Gravure printing and the compound process were the processes that contributed the most to both emissions and OFP. Rapidly developing provinces such as Guangdong, Jiangsu, and Zhejiang were the largest contributors to emissions. Oxygenated VOCs (OVOCs) accounted for most of the VOC emissions, followed by alkanes and aromatics, while aromatics were the dominant groups for total OFP, followed by alkenes/alkynes and OVOCs. Ethyl acetate, toluene, isopropanol, isopentane, and n-pentane were the top five VOC species in terms of emissions, while toluene, ethyl acetate, 1,3-butadiene, isopentane, and 1-butene were the top five species in terms of OFP. Scientific and precise control policy were proposed, involving four aspects: environmental access, emission standards, classification and management, and research on source substitution. We believe our study will provide an important reference for the systematic characterization and control policy of VOC emissions from other industries.

10.
Front Public Health ; 10: 966374, 2022.
Article in English | MEDLINE | ID: mdl-36033819

ABSTRACT

Coffee production workers are exposed to complex mixtures of gases, dust, and vapors, including the known respiratory toxins, diacetyl, and 2,3-pentanedione, which occur naturally during coffee roasting and are also present in flavorings used to flavor coffee. This study evaluated the associations of these two α-diketones with lung function measures in coffee production workers. Workers completed questionnaires, and their lung function was assessed by spirometry and impulse oscillometry (IOS). Personal exposures to diacetyl, 2,3-pentanedione, and their sum (SumDA+PD) were assigned to participants, and metrics of the highest 95th percentile (P95), cumulative, and average exposure were calculated. Linear and logistic regression models for continuous and binary/polytomous outcomes, respectively, were used to explore exposure-response relationships adjusting for age, body mass index, tenure, height, sex, smoking status, race, or allergic status. Decrements in percent predicted forced expiratory volume in 1 second (ppFEV1) and forced vital capacity (ppFVC) were associated with the highest-P95 exposures to 2,3-pentanedione and SumDA+PD. Among flavoring workers, larger decrements in ppFEV1 and ppFVC were associated with highest-P95 exposures to diacetyl, 2,3-pentanedione, and SumDA+PD. Abnormal FEV1, FVC, and restrictive spirometric patterns were associated with the highest-P95, cumulative, and average exposures for all α-diketone metrics; some of these associations were also present among flavoring and non-flavoring workers. The combined category of small and peripheral airways plus small and large airways abnormalities on IOS had elevated odds for highest-P95 exposure to α-diketones. These results may be affected by the small sample size, few cases of abnormal spirometry, and the healthy worker effect. Associations between lung function abnormalities and exposure to α-diketones suggest it may be prudent to consider exposure controls in both flavoring and non-flavoring settings.


Subject(s)
Diacetyl , Occupational Exposure , Flavoring Agents , Humans , Lung , Pentanones
11.
Sci Total Environ ; 846: 157317, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35842166

ABSTRACT

Cooking in China supply the large population with nutrition and, as a commercial activity, it also promotes the economic growth of Chinese society. The specific cooking styles in China can produce complex volatile organic compound (VOC) emissions. The resulting adverse effects on the environment and human health of carbonyls from cooking should not be ignored. We quantitatively evaluated the contribution of carbonyls to common VOCs (carbonyl/VOC ratio) from cooking activities in China through the establishment and comparison of the source profiles, emission factors (EFs), emission amount and ozone formation potential (OFP). It was found that carbonyls are crucial components of VOCs from commercial, canteen and residential cooking activities (COC, CAC and REC, respectively). The carbonyl/VOC ratio from cooking activities in China had EFs, emissions, and a total OFP of 22-65 %, 23-34 %, and 49-104 %, respectively. The high OFP was due to the high OFP emissions intensity (OFPEI) and maximum incremental reactivity (MIR) values of carbonyls. This indicates that to alleviate O3 pollution, OFP-based control measures that target carbonyls might be more efficient than measures that target common VOCs. Priority should be given to emission controlling COC emissions, specifically those from medium- and large-scale catering. Formaldehyde, acetaldehyde, and hexanal were the key carbonyl species that form O3 in the environment. Our findings imply that cooking-emitted carbonyls should not be overlooked in investigations of O3 formation and that these compounds should be subject to strict regulations.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Cooking , Environmental Monitoring , Humans , Ozone/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
12.
Huan Jing Ke Xue ; 43(6): 2957-2965, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686765

ABSTRACT

Based on the tropical cyclone track data in the northwest Pacific Ocean from 2015 to 2020, meteorological observation data, and ozone concentration monitoring data in the Pearl River Delta (PRD), the impacts of four tropical cyclones, namely the westbound tropical cyclone (type A), East China Sea tropical cyclone (type B), offshore tropical cyclone (type C), and offshore tropical cyclone (type D), on ozone concentration in the PRD were analyzed. The results showed that:under the influence of the type A tropical cyclone, the risk of regional ozone concentration exceeding the standard exhibited little change. Under the influence of the type B tropical cyclone, the risk of ozone exceeding the standard in the PRD was obviously increased. Under the influence of the type C tropical cyclone, the risk of regional ozone exceeding the standard obviously increased, but the increase was weaker than that of the type B tropical cyclone. The type D tropical cyclone was far away from the Chinese mainland and had little influence on ozone concentration in the PRD. When the type A or type C tropical cyclones occurred, the average daily maximum 8-hour average ozone concentration (MDA8) in the PRD region increased by approximately 5 µg·m-3, and the ozone MDA8 in some cities may have decreased. When the type B tropical cyclone occurred, the regional ozone MDA8 increased by 19 µg·m-3 on average, and the ozone concentration in all cities increased significantly. Among them, the average increase in ozone MDA8 in Zhuhai and Jiangmen was relatively large, with an increase of greater than 20 µg·m-3. Generally speaking, the ozone concentration in cities in the western PRD was more affected by tropical cyclones. When the type B tropical cyclone occurred, solar radiation increased, sunshine duration lengthened, cloud cover decreased, air temperature rose, and relative humidity decreased in the PRD, all of which were beneficial to photochemical reactions. Meanwhile, downward flow increased in the boundary layer, and downward flow transported high-concentration ozone to the ground, which promoted the increase in ozone concentration on the ground. When type A or type C tropical cyclones occurred, the change in meteorological conditions was not entirely conducive to the increase in ozone concentration, and in some cases, even adverse meteorological conditions such as rainfall occurred, which led to the risk of regional ozone exceeding the standard being less than that of the type B tropical cyclone. Affected by tropical cyclones, sunshine hours and air temperature in western cities of the PRD increased more than those in eastern cities, which was more conducive to ozone generation.


Subject(s)
Air Pollutants , Cyclonic Storms , Ozone , Air Pollutants/analysis , Environmental Monitoring/methods , Ozone/analysis , Rivers
13.
Front Public Health ; 10: 878907, 2022.
Article in English | MEDLINE | ID: mdl-35757620

ABSTRACT

Coffee production workers can be exposed to inhalational hazards including alpha-diketones such as diacetyl and 2,3-pentanedione. Exposure to diacetyl is associated with the development of occupational lung disease, including obliterative bronchiolitis, a rare and irreversible lung disease. We aimed to identify determinants contributing to task-based exposures to diacetyl and 2,3-pentanedione at 17 U.S. coffee production facilities. We collected 606 personal short-term task-based samples including roasting (n = 189), grinding (n = 74), packaging (n = 203), quality control (QC, n = 44), flavoring (n = 15), and miscellaneous production/café tasks (n = 81), and analyzed for diacetyl and 2,3-pentanedione in accordance with the modified OSHA Method 1013/1016. We also collected instantaneous activity-based (n = 296) and source (n = 312) samples using evacuated canisters. Information on sample-level and process-level determinants relating to production scale, sources of alpha-diketones, and engineering controls was collected. Bayesian mixed-effect regression models accounting for censored data were fit for overall data (all tasks) and specific tasks. Notable determinants identified in univariate analyses were used to fit all plausible models in multiple regression analysis which were summarized using a Bayesian model averaging method. Grinding, flavoring, packaging, and production tasks with ground coffee were associated with the highest short-term and instantaneous-activity exposures for both analytes. Highest instantaneous-sources of diacetyl and 2,3-pentanedione included ground coffee, flavored coffee, liquid flavorings, and off-gassing coffee bins or packages. Determinants contributing to higher exposures to both analytes in all task models included sum of all open storage sources and average percent of coffee production as ground coffee. Additionally, flavoring ground coffee and flavoring during survey contributed to notably higher exposures for both analytes in most, but not all task groups. Alternatively, general exhaust ventilation contributed to lower exposures in all but two models. Additionally, among facilities that flavored, local exhaust ventilation during flavoring processes contributed to lower 2,3-pentanedione exposures during grinding and packaging tasks. Coffee production facilities can consider implementing additional exposure controls for processes, sources, and task-based determinants associated with higher exposures to diacetyl and 2,3-pentanedione, such as isolating, enclosing, and directly exhausting grinders, flavoring mixers, and open storage of off-gassing whole bean and ground coffee, to reduce exposures and minimize risks for lung disease among workers.


Subject(s)
Coffee , Diacetyl , Lung Diseases , Occupational Exposure , Pentanones , Bayes Theorem , Diacetyl/analysis , Flavoring Agents/analysis , Humans , Occupational Exposure/analysis , Pentanones/analysis
14.
Int Arch Occup Environ Health ; 95(8): 1741-1754, 2022 10.
Article in English | MEDLINE | ID: mdl-35482110

ABSTRACT

OBJECTIVE: Farmers have an increased risk for chronic bronchitis and airflow obstruction. The objective of this study was to investigate the association of these health outcomes with farm activities. METHODS: We evaluated the Keokuk County Rural Health Study (KCRHS) enrollment data for farm activities and the two health outcomes chronic bronchitis based on self-reported symptoms and airflow obstruction based on spirometry. We used logistic regression to model the health outcomes, yielding an odds ratio (OR) and 95% confidence interval (95% CI) for farm activities while adjusting for potential confounders and other risk factors. RESULTS: Of the 1234 farmers, 104 (8.4%) had chronic bronchitis, 75 (6.1%) fulfilled the criteria for airflow obstruction, and the two outcomes overlapped by 18 participants. Chronic bronchitis without airflow obstruction (n = 86) had a statistically significant association with crop storage insecticides (OR 3.1, 95% CI 1.6, 6.1) and a low number of years (≤ 3) worked with turkeys (OR 3.3, 95% CI 1.2, 9.4). The latter result should be interpreted with caution because it is based on a small number of cases (n = 5). Airflow obstruction with or without chronic bronchitis (n = 75) was significantly associated with ever working in a hog or chicken confinement setting (OR 2.2, 95% CI 1.0, 4.5). CONCLUSIONS: These results suggest that work with crop storage insecticides or turkeys may increase the risk for chronic bronchitis and work in hog or chicken confinement may increase the risk for airflow obstruction.


Subject(s)
Bronchitis, Chronic , Insecticides , Pulmonary Disease, Chronic Obstructive , Bronchitis, Chronic/epidemiology , Farms , Forced Expiratory Volume , Humans , Iowa/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology
15.
Phys Rev E ; 106(6-1): 064306, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671139

ABSTRACT

Topological resonance has been revealed in degree-heterogeneous scale-free networks for weak signal amplification, but not in degree-homogeneous all-to-all networks [Acebrón et al., Phys. Rev. Lett. 99, 128701 (2007)0031-900710.1103/PhysRevLett.99.128701]. Here, we show that when the coupling distance of the all-to-all networks is reduced from global to local, i.e., converting all-to-all networks into rings, we can observe a resonant response to a weak signal similar to scale-free networks. We find that such a resonance effect induced by ring topology is robust across a wide range of ring sizes and signal frequencies. We further show that at intermediate coupling strength, oscillators in the rings can form separate synchronous clusters that compete with each other, resulting in large amplitude oscillations of boundary nodes between clusters and thus giving rise to the resonant signal amplification. Finally, we propose a structure of a three-node feed-forward motif simplified from the observed cluster synchronization competition to analyze the mechanism underlying the resonance behavior, which corresponds well with the numerical results.

16.
Buildings (Basel) ; 12(12)2022 Dec.
Article in English | MEDLINE | ID: mdl-38650891

ABSTRACT

Healthcare facility staff use a wide variety of cleaning and disinfecting products during their daily operations, many of which are associated with respiratory or skin irritation or sensitization with repeated exposure. The objective of this study was to characterize the prevalence of cleaning and disinfection product use, glove use during cleaning and disinfection, and skin/allergy symptoms by occupation and identify the factors influencing glove use among the healthcare facility staff. A questionnaire was administered to the current employees at a midwestern Veterans Affairs healthcare facility that elicited information on cleaning and disinfection product use, glove use during cleaning and disinfection, skin/allergy symptoms, and other demographic characteristics, which were summarized by occupation. The central supply/environmental service workers (2% of the total survey population), nurses (26%,), nurse assistants (3%), and laboratory technicians (5%) had the highest prevalence of using cleaning or disinfecting products, specifically quaternary ammonium compounds, bleach, and alcohol. Glove use while using products was common in both patient care and non-patient care occupations. The factors associated with glove use included using bleach or quaternary ammonium compounds and using cleaning products 2-3 or 4-5 days per week. A high frequency of glove use (≥75%) was reported by workers in most occupations when using quaternary ammonium compounds or bleach. The use of alcohol, bleach, and quaternary ammonium compounds was associated with skin disorders (p < 0.05). These research findings indicate that although the workers from most occupations report a high frequency of glove use when using cleaning and disinfection products, there is room for improvement, especially among administrative, maintenance, and nursing workers. These groups may represent populations which could benefit from the implementation of workplace interventions and further training regarding the use of personal protective equipment and the potential health hazards of exposure to cleaning and disinfecting chemicals.

17.
Sci Rep ; 11(1): 23552, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876655

ABSTRACT

The naturally formed aeolian sand dunes in northern Shaanxi exhibit unique engineering characteristics. Several challenges, such as the poor self-stabilization ability of the surrounding rock, difficultly in injecting grout, and insufficient construction experience, restrict the construction of road tunnels under this stratum. Therefore, in this study, a case study of the Shenmu No. 1 tunnel was conducted to investigate the engineering characteristics of aeolian sand tunnels, compare the grouting effects of commonly used grouting materials, and discuss the reinforcement effects of different construction schemes in aeolian sand tunnels. Based on a field grouting test, it was determined that it is difficult to inject ordinary cement grout into an aeolian sand layer. Furthermore, it was determined that superfine cement grout and modified sodium silicate grout can be injected, but the former exhibits a poor reinforcement effect. Additionally, results of numerical analysis indicated that an approach based on a concept of "horizontal jet grouting pile + benching partial excavation method with a temporary invert" is suitable for the construction of tunnels in aeolian sand in China.

18.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(11): 1075-1079, 2021 Nov 15.
Article in English, Chinese | MEDLINE | ID: mdl-34753537

ABSTRACT

Congenital hypothyroidism is one of the common diseases causing delayed intelligence development and growth retardation in children. In 2021, the ENDO-European Reference Network updated the practice guidelines for the diagnosis and management of congenital hypothyroidism. The guidelines give a comprehensive and detailed description of the screening, diagnosis, and management of congenital hypothyroidism in neonates. This article gives an interpretation of the guidelines in order to provide a reference for clinicians in China.


Subject(s)
Congenital Hypothyroidism , Child , China , Congenital Hypothyroidism/diagnosis , Consensus , Humans , Infant, Newborn , Neonatal Screening , Thyrotropin
19.
Phys Rev E ; 104(3-1): 034204, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654153

ABSTRACT

We study the maximum response of network-coupled bistable units to subthreshold signals focusing on the effect of phase disorder. We find that for signals with large levels of phase disorder, the network exhibits an enhanced response for intermediate coupling strength, while generating a damped response for low levels of phase disorder. We observe that the large phase-disorder-enhanced response depends mainly on the signal intensity but not on the signal frequency or the network topology. We show that a zero average activity of the units caused by large phase disorder plays a key role in the enhancement of the maximum response. With a detailed analysis, we demonstrate that large phase disorder can suppress the synchronization of the units, leading to the observed resonancelike response. Finally, we examine the robustness of this phenomenon to the unit bistability, the initial phase distribution, and various signal waveform. Our result demonstrates a potential benefit of phase disorder on signal amplification in complex systems.

20.
Huan Jing Ke Xue ; 42(11): 5162-5168, 2021 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-34708955

ABSTRACT

A volatile organic compounds(VOCs) emission source classification and accounting system from domestic sources in China was established for the period between 2010 and 2018. Suggestions for the prevention and treatment of VOCs from domestic sources were developed and proposed. The results showed that the total VOCs emission inventory from domestic sources in China in 2018 was 2518 kt. Architectural decoration, asphalt road paving, cooking, and rural household biomass use source were the four largest contributors, accounting for 69.22% of the total emissions. Chemical household products and urban and rural coal use contributed equally, accounting for 10.43% and 9.98%, respectively, whilst car repair accounted for 7.75%. Shandong, Sichuan, Henan, Guangdong, Jiangsu, and Hebei were the six provinces that contributed the most(36.01%). During the 2010-2018 period, China's domestic VOCs emissions increased at a rate of 0.43%, and after reaching a peak in 2013, the emissions began to decline at a rate of 2.23%. The reason for the decline was that, on the one hand, the cleaner energy consumption of residents made a contribution to the gradual reduction of domestic coal and biomass consumption. On the other hand, the gradual saturation of housing construction in some areas, which led to a decrease in the annual construction of the country. It is recommended to promote the comprehensive management of architectural decoration, cooking methods, and car repair, while paying attention to the VOCs emissions from asphalt road paving. Meanwhile, continue to optimize the energy use structure of domestic sources, and promote the pollution control of civil coal and household biomass combustion in accordance with local regulations and multiple measures.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...