Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724505

ABSTRACT

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Subject(s)
Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
2.
J Org Chem ; 89(6): 3931-3940, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38450634

ABSTRACT

The electrochemical oxidative radical-radical cross-coupling of sulfonyl hydrazides with diselenides for the synthesis of selenosulfonates was successfully accomplished. The method is applicable to a wide range of aromatic/aliphatic sulfonyl hydrazides and diselenides, providing products in good to excellent yields. Notably, this protocol stands out for its green and sustainable nature, as it does not rely on transition metals and oxidizing agents, and the starting materials are cost-effective and readily available.

3.
Cell Death Dis ; 14(1): 56, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693850

ABSTRACT

MAPK/JNK signaling is pivotal in carcinogenesis. However, ubiquitin-mediated homeostasis of JNK remains to be verified. Here, with results from RNA sequencing (RNA-seq) and luciferase reporter pathway identification, we show that USP14 orchestrates MAPK/JNK signaling and identify USP14 as a deubiquitinase that interacts and stabilizes JNK. USP14 is elevated in colorectal cancer patients and is positively associated with JNK protein and downstream gene expression. USP14 ablation reduces cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by downregulating MAPK/JNK pathway activation. Moreover, USP14 expression is induced by TNF-α, forming a feedback loop with JNK and leading to tumor amplification. Our study suggests that elevated expression of USP14 promotes MAPK/JNK signaling by stabilizing JNK, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased USP14 expression.


Subject(s)
Colorectal Neoplasms , Ubiquitin Thiolesterase , Humans , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , MAP Kinase Signaling System/genetics , Disease Progression
4.
Front Genet ; 13: 888601, 2022.
Article in English | MEDLINE | ID: mdl-36171884

ABSTRACT

Hepatocellular carcinoma (HCC) is the most prevalent type of primary liver cancer characterized by high mortality and morbidity rate. The lack of effective treatments and the high frequency of recurrence lead to poor prognosis of patients with HCC. Therefore, it is important to develop robust prediction tools for predicting the prognosis of HCC. Recent studies have shown that cancer stem cells (CSC) participate in HCC progression. The aim of this study was to explore the prognostic value of CSC-related genes and establish a prediction model based on data from The Cancer Genome Atlas (TCGA) database. In this study, 475 CSC-related genes were obtained from the Molecular Signature Database and 160 differentially expressed CSC-related genes in HCC patients were identified using the limma R package in the TCGA database. A total of 79 CSC-related genes were found to be associated with overall survival (OS). Using the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regressions, a 3-gene signature (RAB10, TCOF1, and PSMD14) was constructed. Receiver operating characteristic (ROC) curves and Kaplan-Meier survival curves were constructed to test the prediction performance of the signature. Performance of the signature was validated using the International Cancer Genome Consortium (ICGC) dataset. In addition, immune feature and functional enrichment analyses were carried out to explore the underlying mechanisms. Moreover, a co-expression network was constructed using the weighted gene correlation network analysis (WGCNA) method to select genes significantly associated with risk scores in HCC in the TCGA dataset. The SGO2 gene was found to be significantly associated with risk scores of HCC. In vitro experiments revealed that it can promote HCC cell proliferation. Therefore, SGO2 may be a potential therapeutic target for HCC treatment. The constructed nomogram can help clinicians make decisions about HCC treatment.

5.
Cell Death Discov ; 8(1): 4, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013153

ABSTRACT

Serum response factor (SRF) regulates differentiation and proliferation by binding to RhoA-actin-activated MKL or Ras-MAPK-activated ELK transcriptional coactivators, but the molecular mechanisms responsible for SRF regulation remain unclear. Here, we show that Nemo-like kinase (NLK) is required for the promotion of SRF/ELK signaling in human and mouse cells. NLK was found to interact with and phosphorylate SRF at serine residues 101/103, which in turn enhanced the association between SRF and ELK. The enhanced affinity of SRF/ELK antagonized the SRF/MKL pathway and inhibited mouse myoblast differentiation in vitro. In a skeletal muscle-specific Nlk conditional knockout mouse model, forming muscle myofibers underwent hypertrophic growth, resulting in an increased muscle and body mass phenotype. We propose that both phosphorylation of SRF by NLK and phosphorylation of ELKs by MAPK are required for RAS/ELK signaling, confirming the importance of this ancient pathway and identifying an important role for NLK in modulating muscle development in vivo.

6.
Pediatr Diabetes ; 20(7): 861-870, 2019 11.
Article in English | MEDLINE | ID: mdl-31408243

ABSTRACT

OBJECTIVE: To evaluate ß-cell function in obese children and adolescents meeting clinical criteria for isolated obesity (iOB), isolated components of dysmetabolism (cMD), or metabolic syndrome (MS), and in obese children and adolescents with normal glucose tolerance (NGT), impaired glucose regulation (IGR), or type 2 diabetes (T2DM). STUDY DESIGN: We undertook a prospective study of Han Chinese children and adolescents aged 8-16 years (median 11 ± 1.4) seen in an obesity clinic between May 2013 and 2018. Patients were classified as iOB (53), cMD (139), and MS (139) groups based on clinical criteria. The same patients were also classified as NGT (212), IGR (111), or T2DM (8) based on results of an oral glucose tolerance test (OGTT). The MS patients were classified as NGT [MS](59) and IGR [MS](72) for the further study. All participants also completed a mixed-meal tolerance test (MMTT). RESULTS: Compared with the iOB group, the MS group had significantly higher area under the curve of C-peptide up to the 2 hours (AUC CP) (P = .03) and peak C-peptide (P = .03), adjusted for BMI, age and Tanner stage, on MMTT. However, there was no difference in the insulinogenic index (ΔI30/ΔG30) or oral disposition index (oDI) derived from the OGTT among the three groups. However, 52% of participants with MS had IGR, compared to 28% in the cMD group. Compared with the NGT group, the individuals with IGR had significantly lower ΔI30/ΔG30 (P = .001) and oDI (P < .001). Compared with the iOB group, the NGT[MS] had significantly higher AUC CP (P = .004), peak C-peptide (P = .004) and ΔI30/ΔG30 (P = .007) adjusted for age, but no difference in oDI. Compared with the NGT[MS], the IGR[MS] had significantly lower ΔI30/ΔG30 (P = .005) and oDI (P < .001), but the AUC CP and peak C-peptide had no difference. CONCLUSION: Although the MS youth have ß-cell hyperfunction as a whole, ß-cell dysfunction is present in the early stages of dysmetabolism in obese youth with cMD or MS and worsened across the spectrum from iOB to cMD and MS, contributing to development of T2DM.


Subject(s)
Insulin-Secreting Cells/physiology , Metabolic Syndrome/complications , Metabolic Syndrome/physiopathology , Pediatric Obesity/complications , Pediatric Obesity/physiopathology , Adolescent , Case-Control Studies , Child , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Female , Glucose Intolerance/complications , Glucose Intolerance/physiopathology , Glucose Tolerance Test , Humans , Insulin Resistance/physiology , Islets of Langerhans/physiopathology , Male , Prospective Studies
7.
Biochem Pharmacol ; 137: 10-28, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28456516

ABSTRACT

Microtubules are essential for the mitotic division of cells and have become an attractive target for anti-tumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells. In this study, a total of six indole 1-position modified 1-indolyl acetate-5-nitroimidazole derivatives were designed, synthesized, and evaluated for their ability to inhibit tubulin polymerization caused by binding to the colchicine-binding site of tubulin. Among them, compound 3 displayed the best ability to inhibit tubulin polymerization; it also exhibited better anti-proliferative activities than colchicine against a panel of human cancer cells (with IC50 values ranging from 15 to 40nM), especially HeLa cells (with IC50 values of 15nM), based on the cellular cytotoxicity assay results. Moreover, cellular mechanism studies indicated that compound 3 could induce G2/M phase arrest and apoptosis of HeLa and MCF-7 cells, which were associated with alterations in the expression of cell cycle-checkpoint related proteins (Cyclin B1, Cdc2, and P21) and a reduction in the mitochondrial membrane potential as well as alterations in the levels of apoptosis-related proteins (PARP, Caspase 9, Bcl-2, and Bax) of these cells, respectively. Importantly, in vivo studies further revealed that compound 3 could dramatically suppress HeLa cell xenograft tumour growth compared with vehicle and CA-4 phosphate (CA-4P), and no signs of toxicity were observed in these mice. Collectively, these in vitro and in vivo results indicated that compound 3 might be a promising lead compound for further development as a potential anti-cancer drug.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Nitroimidazoles/pharmacology , Stilbenes/pharmacology , Tubulin Modulators/pharmacology , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , Female , HEK293 Cells , HT29 Cells , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Mice , Mice, Nude , Nitroimidazoles/chemistry , Protein Structure, Secondary , Random Allocation , Stilbenes/chemistry , Tubulin Modulators/chemistry , Xenograft Model Antitumor Assays/methods
8.
Sci Rep ; 6: 25387, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27138035

ABSTRACT

A series of 12 novel acylhydrazone, chalcone and amide-bridged analogues of combretastatin A-4 were designed and synthesized toward tubulin. All these compounds were determined by elemental analysis, (1)H NMR, and MS. Among them, compound 7 with acylhydrazone-bridge, bearing a benzyl at the indole-N position, was identified as a potent antiproliferative agent against a panel of cancer cell lines with IC50 values ranging from 0.08 to 35.6 µM. In contrast, its cytotoxic effects on three normal human cells were minimal. Cellular studies have revealed that the induction of apoptosis by compound 7 was associated with a collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, alterations in the expression of some cell cycle-related proteins (Cyclin B1, Cdc25c, Cdc2, P21) and some apoptosis-related proteins (Bax, PARP, Bcl-2, Caspase3). The docking mode showed the binding posture of CA-4 and compound 7 are similar in the colchicine-binding pocket of tubulin, as confirmed by colchicine-tubulin competitive binding assay, tubulin polymerization inhibitory activity, extracellular protein expression determination assay and confocal immunofluorescence microscopy. In vivo study, compound 7 effectively inhibited A549 xenograft tumor growth without causing significant loss of body weight suggesting that compound 7 is a promising new antimitotic agent with clinical potential.


Subject(s)
Cell Proliferation/drug effects , Neoplasms/drug therapy , Stilbenes/chemical synthesis , Tubulin Modulators/chemical synthesis , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Chalcone/chemistry , Drug Screening Assays, Antitumor/methods , Humans , Hydrazones/chemistry , Mice , Neoplasms/pathology , Stilbenes/chemistry , Structure-Activity Relationship , Tubulin/chemistry , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...