Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(6): e0303233, 2024.
Article in English | MEDLINE | ID: mdl-38900774

ABSTRACT

The increasingly shortened development cycle of smart vehicles has led to a qualitative shift in the nature of automotive products. Growing spatial design of vehicle interiors can effectively satisfy users' personalisation preferences and increase their willingness to buy, as well as mitigating the environmental pollution caused by the problem of rapid replacement. Considering the subjectivity and uncertainty of users' emotional needs, this study adopts the FAHP method to comprehensively analyse and rank the SET series of factors, then combines the grey correlation method with the correlation analysis of the areas related to the interior space of the automobile, constructs the sample of the interior space of the automobile and extracts the kansei words of the space sample. Intentional vocabulary mean scores were calculated to factor analyses through kansei engineering, next the fuzzy QFD quality house was built to make affective semantic design associations and derive design weights, which are then used to guide the design and ultimately realise the design of a dynamic automotive interaction scenario. The results of the study show that the integration of different theories can reduce the uncertainties in accessing users' emotional needs. At the same time, it can provide systematic guidance for the interaction design of a growable automobile in terms of multiple dimensions of interior space connectivity, spatial layout, and perceptual experience, as well as provide valuable suggestions for the subsequent development of interior spaces.


Subject(s)
Automobiles , Humans , Interior Design and Furnishings , Fuzzy Logic
2.
ACS Nano ; 17(17): 16952-16959, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37585264

ABSTRACT

All-dielectric optical metasurfaces can locally control the amplitude and phase of light at the nanoscale, enabling arbitrary wavefront shaping. However, lack of postfabrication tunability has limited the true potential of metasurfaces for many applications. Here, we utilize a thin liquid crystal (LC) layer as a tunable medium surrounding the metasurface to achieve a phase-only spatial light modulator (SLM) with high reflection in the visible frequency, exhibiting active and continuous resonance tuning with associated 2π phase control and uncoupled amplitude. Dynamic wavefront shaping is demonstrated by programming 96 individually addressable electrodes with a small pixel pitch of ∼1 µm. The small pixel size is facilitated by the reduced LC thickness, strongly suppressing cross-talk among pixels. This device is used to demonstrate dynamic beam steering with a wide field-of-view and high absolute diffraction efficiencies. We believe that our demonstration may help realize next-generation, high-resolution SLMs, with wide applications in dynamic holography, tunable optics, and light detection and ranging (LiDAR), to mention a few.

3.
Adv Mater ; 35(33): e2302248, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37165546

ABSTRACT

Excitonic resonance in atomically thin semiconductors offers a favorite platform to study 2D nanophotonics in both classical and quantum regimes and promises potentials for highly tunable and ultra-compact optical devices. The understanding of charge density dependent exciton-trion conversion is the key for revealing the underlaying physics of optical tunability. Nevertheless, the insufficient and inefficient light-matter interactions hinder the observation of trionic phenomenon and the development of excitonic devices for dynamic power-efficient electro-optical applications. Here, by engaging an optical cavity with atomically thin transition metal dichalcogenides (TMDCs), greatly enhanced exciton-trion conversion is demonstrated at room temperature (RT) and achieve electrical modulation of reflectivity of ≈40% at exciton and 7% at trion state, which correspondingly enables a broadband large phase tuning in monolayer tungsten disulfide. Besides the absorptive conversion, ≈100% photoluminescence conversion from excitons to trions is observed at RT, illustrating a clear physical mechanism of an efficient exciton-trion conversion for extraordinary optical performance. The results indicate that both excitons and trions can play significant roles in electrical modulation of the optical parameters of TMDCs at RT. The work shows the real possibility for realizing electrical tunable and multi-functional ultra-thin optical devices using 2D materials.

4.
Adv Mater ; 35(34): e2205367, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36341483

ABSTRACT

All-dielectric metasurfaces provide unique solutions for advanced wavefront manipulation of light with complete control of amplitude and phase at sub-wavelength scales. One limitation, however, for most of these devices is the lack of any post-fabrication tunability of their response. To break this limit, a promising approach is employing phase-change materials (PCMs), which provide fast, low energy, and non-volatile means to endow metasurfaces with a switching mechanism. In this regard, great advancements have been done in the mid-infrared and near-infrared spectrum using different chalcogenides. In the visible spectral range, however, very few devices have demonstrated full phase manipulation, high efficiencies, and reversible optical modulation. In this work, a programmable all-dielectric Huygens' metasurface made of antimony sulfide (Sb2 S3 ) PCM is experimentally demonstrated, a low loss and high-index material in the visible spectral range with a large contrast (≈0.5) between its amorphous and crystalline states. ≈2π phase modulation is shown with high associated transmittance and it is used to create programmable beam-steering devices. These novel chalcogenide PCM metasurfaces have the potential to emerge as a platform for next-generation spatial light modulators and to impact application areas such as programmable and adaptive flat optics, light detection and ranging (LiDAR), and many more.

5.
Light Sci Appl ; 11(1): 141, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581195

ABSTRACT

Spatial light modulators (SLMs) are the most relevant technology for dynamic wavefront manipulation. They find diverse applications ranging from novel displays to optical and quantum communications. Among commercial SLMs for phase modulation, Liquid Crystal on Silicon (LCoS) offers the smallest pixel size and, thus, the most precise phase mapping and largest field of view (FOV). Further pixel miniaturization, however, is not possible in these devices due to inter-pixel cross-talks, which follow from the high driving voltages needed to modulate the thick liquid crystal (LC) cells that are necessary for full phase control. Newly introduced metasurface-based SLMs provide means for pixel miniaturization by modulating the phase via resonance tuning. These devices, however, are intrinsically monochromatic, limiting their use in applications requiring multi-wavelength operation. Here, we introduce a novel design allowing small pixel and multi-spectral operation. Based on LC-tunable Fabry-Perot nanocavities engineered to support multiple resonances across the visible range (including red, green and blue wavelengths), our design provides continuous 2π phase modulation with high reflectance at each of the operating wavelengths. Experimentally, we realize a device with 96 pixels (~1 µm pitch) that can be individually addressed by electrical biases. Using it, we first demonstrate multi-spectral programmable beam steering with FOV~18° and absolute efficiencies exceeding 40%. Then, we reprogram the device to achieve multi-spectral lensing with tunable focal distance and efficiencies ~27%. Our design paves the way towards a new class of SLM for future applications in displays, optical computing and beyond.

6.
Appl Opt ; 61(5): B164-B170, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35201137

ABSTRACT

Huygens' metasurfaces are transparent arrays of nanostructures that enable phase-front manipulation. This is achieved by simultaneous excitation of electric dipole (ED) and magnetic dipole (MD) resonances with equal amplitudes and phases in the constituent meta-atoms. In usual designs, the size changes of the meta-atoms, necessary to map the phase front, can detune the overlapping of ED and MD resonances, decreasing the transmission and limiting the operating bandwidth. In this report, we demonstrate that ED and MD resonances can be almost perfectly tuned together over a large wavelength range, keeping their spectral overlap, in a silicon metasurface by using anisotropic meta-atoms. In particular, we show near-unity transmission (>95% in simulations) and 2π phase control in a wavelength range from 760 to 815 nm using cuboidal nanoantennas. Using this concept, we also experimentally demonstrate clear reconstruction from holograms of a single metasurface spanning the near infrared and the whole visible spectral range.

7.
Sci Rep ; 9(1): 8673, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31209242

ABSTRACT

All-dielectric metasurfaces have attracted attention for highly efficient visible light manipulation. So far, however, they are mostly passive devices, while those allowing dynamic control remain a challenge. A highly efficient tuning mechanism is immersing the metasurface in a birefringent liquid crystal (LC), whose refractive index can be electrically controlled. Here, an all-dielectric tunable metasurface is demonstrated based on this concept, operating at visible frequencies and based on TiO2 nanodisks embedded in a thin LC layer. Small driving voltages from 3~5 V are sufficient to tune the metasurface resonances, with an associated transmission modulation of more than 65%. The metasurface optical responses, including the observed electric and magnetic dipole resonance shifts as well as the interfacial anchoring effect of the LC induced by the presence of the nanostructures, are systematically discussed. The dynamic tuning observed in the transmission spectra can pave the way to dynamically tunable metasurface devices for efficient visible light modulation applications.

8.
Nano Lett ; 18(3): 2124-2132, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29485885

ABSTRACT

The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.

9.
Appl Opt ; 52(26): 6562-71, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24085134

ABSTRACT

Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

10.
Appl Opt ; 48(34): H196-202, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19956291

ABSTRACT

An effective hologram region (EHR) based approach is presented to speed up the computation of computer generated holograms (CGHs). The object space is predivided into subspaces, and an EHR for each subspace is predefined according to the maximum spatial frequency of interference fringes, light diffraction efficiency, and CGH binarization effect. To compute the hologram of an object, the object points are first categorized according to which subspace they are located in, and then their holograms are calculated using the corresponding EHRs. As each EHR usually takes up only a portion of the hologram plate, the CGH computational load is thus reduced. This new approach is highly suitable for large hologram display systems. In addition, when compared to the reconstructed image using the conventional approach, our experimental results show that more noise can be blocked off and the reconstructed image appears sharper without noticeable brightness reduction.

11.
Opt Express ; 17(21): 18543-55, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-20372585

ABSTRACT

In computation of full-parallax computer-generated hologram (CGH), balance between speed and memory usage is always the core of algorithm development. To solve the speed problem of coherent ray trace (CRT) algorithm and memory problem of look-up table (LUT) algorithm without sacrificing reconstructed object quality, we develop a novel algorithm with split look-up tables (S-LUT) and implement it on graphics processing unit (GPU). Our results show that S-LUT on GPU has the fastest speed among all the algorithms investigated in this paper, while it still maintaining low memory usage. We also demonstrate high quality objects reconstructed from CGHs computed with S-LUT on GPU. The GPU implementation of our new algorithm may enable real-time and interactive holographic 3D display in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...