Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 177: 117017, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917762

ABSTRACT

5-HT clearance, commonly mediated by transporters in the uptake-1 and uptake-2 families, has been linked to 5-HT1B receptor's action on behaviors. Since no specific transporters identified yet, effects of serotonin transporter (SERT) and organic cation transporter (OCTs) on 5-HT1B-elicited immobility phenotype, and 5-HT and HIS uptake were then investigated. Intraperitoneal injections of SERT inhibitor fluoxetine (FLX) and/or OCTs inhibitor decynium (D22) were used prior to local perfusion of 5-HT1B agonist CP93129 into the ventral hippocampus to measure immobility times in the FST and TST, to measure 5-HT uptake efficiencies and HIS uptake efficiencies derived from linear regressions using the transient no-net-flux quantitative microdialysis in C57BL/6 mice. Exogenous 5-HT and HIS uptake were measured following incubation of FLX and/or D22 with CP93129 in the RBL-2H3 cells. Moreover, surface membrane levels of SERT and OCT were detected in response to CP93129. Local CP93129 prolonged immobility times, which were attenuated following pretreatment of either inhibitor. Local CP93129 lowered the slopes obtained from the lineal regressions for 5-HT and HIS (slope is reciprocal to uptake efficiency), which were then weakened following pretreatment of either inhibitor. Similar findings were obtained following CP93129 incubation, and co-incubation of CP93129 with either inhibitor in the RBL-2H3. Moreover, CP93129 dose-dependently moved SERT and OCT3 in the cytosol to the surface membrane. Both SERT and OCT are the target effectors mediating 5-HT1B regulation of immobility time and 5-HT uptake, OCT mediates 5-HT1B regulation of HIS uptake. Their underlying signal transductions need to be further explored.

2.
ACS Chem Neurosci ; 12(5): 845-856, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33586968

ABSTRACT

Interactions between the hypothalamic-pituitary-adrenal axis and the central 5-HT system in the depressive state remain largely unknown. The present study investigated corticosterone (CORT) regulations of extracellular 5-HT in the hippocampal CA3 in a mouse model of depression. Basal dialysate 5-HT, true extracellular 5-HT, 5-HT reuptake efficiency, and time courses of dialysate 5-HT following CORT injections at 10, 20, and 40 mg/kg were determined at baseline, depressive-like state and after subsequent fluoxetine (FLX) treatment using in vivo microdialysis in male C57BL/6 mice. Behavioral tests were used to determine behavioral phenotypes and therapeutic responses to FLX. Depressed mice showed decreased extracellular 5-HT, increased 5-HT reuptake efficiency, and absence of the increase in dialysate 5-HT response to CORT injections, which were all reversed in FLX-responsive mice. Surprisingly, the FLX nonresponsive mice continued to worsen behaviorally and exhibited lower extracellular 5-HT and higher 5-HT reuptake efficiency. Our study indicates that abolished-CORT induced 5-HT response, decreased extracellular 5-HT, and increased 5-HT reuptake efficiency might be the signature features associated with depressive-like state. Increased 5-HT reuptake efficiency was one of the underlying mechanisms, with target effectors remaining to be explored. The findings in the FLX nonresponsive mice suggest distinct neuromechanisms, which might be genetically predetermined.


Subject(s)
Corticosterone , Serotonin , Animals , Fluoxetine/pharmacology , Hippocampus , Hypothalamo-Hypophyseal System , Male , Mice , Mice, Inbred C57BL , Pituitary-Adrenal System
3.
Behav Brain Res ; 389: 112618, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32360167

ABSTRACT

Dorsal raphe (DR) and median raphe (MR) 5-HT neurons are two distinct sub-systems known to be regulated by 5-HT1A and 5-HT1B auto-receptors. Whether the auto-receptors in each sub-system are functionally altered in depressive-like state remains unknown. The present study is aimed to study a specific circuit (DR-ventral hippocampus and MR-dorsal hippocampus) within each sub-system to investigate changes in receptor sensitivity in the pathogenesis of depression. A mouse model of depression was developed through the social defeat paradigm, and was then treated with fluoxetine (FLX). 5-HT1A auto-receptor in the neuronal cell body (DR or MR) and 5-HT1B auto-receptor in the axonal terminal (ventral or dorsal hippocampus) were directly targeted by local perfusion of antagonists (5-HT1A: WAY100635; 5-HT1B: GR127935) through reverse microdialysis. Time courses of dialysate 5-HT measured at the axonal terminal were subsequently determined for each circuit. At baseline, 5-HT1A and 5-HT1B antagonists dose-dependently increased dialysate 5-HT, with sub-circuit specificity. In the depressive-like state, greater increases in dialysate 5-HT were observed only in the DR-ventral hippocampus circuit following local delivery of both antagonists, which were then fully restored following the FLX treatment. In contrast, no changes were observed in the MR-dorsal hippocampus circuit. Our results demonstrate differential changes in sensitivities of 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus and MR-dorsal hippocampus circuits. 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus circuit are sensitized in the depressive-like state. Taken together, these results suggest that the DR sub-system maybe the neural substrate mediating depressive phenotypes.


Subject(s)
Autoreceptors/metabolism , Depression/metabolism , Dorsal Raphe Nucleus/metabolism , Hippocampus/metabolism , Neurons/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Animals , Male , Mice, Inbred C57BL , Microdialysis , Neural Pathways/metabolism , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...