Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961063

ABSTRACT

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles virus/immunology , Measles virus/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mumps virus/immunology , Mumps virus/genetics , Mice, Knockout , Mesocricetus , Immunoglobulin A/immunology , Immunoglobulin A/blood
2.
Bioconjug Chem ; 35(5): 638-652, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38669628

ABSTRACT

Aberrant canonical NF-κB signaling has been implicated in diseases, such as autoimmune disorders and cancer. Direct disruption of the interaction of NEMO and IKKα/ß has been developed as a novel way to inhibit the overactivation of NF-κB. Peptides are a potential solution for disrupting protein-protein interactions (PPIs); however, they typically suffer from poor stability in vivo and limited tissue penetration permeability, hampering their widespread use as new chemical biology tools and potential therapeutics. In this work, decafluorobiphenyl-cysteine SNAr chemistry, molecular modeling, and biological validation allowed the development of peptide PPI inhibitors. The resulting cyclic peptide specifically inhibited canonical NF-κB signaling in vitro and in vivo, and presented positive metabolic stability, anti-inflammatory effects, and low cytotoxicity. Importantly, our results also revealed that cyclic peptides had huge potential in acute lung injury (ALI) treatment, and confirmed the role of the decafluorobiphenyl-based cyclization strategy in enhancing the biological activity of peptide NEMO-IKKα/ß inhibitors. Moreover, it provided a promising method for the development of peptide-PPI inhibitors.


Subject(s)
Acute Lung Injury , I-kappa B Kinase , Lipopolysaccharides , Peptides, Cyclic , I-kappa B Kinase/metabolism , I-kappa B Kinase/antagonists & inhibitors , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Mice , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Humans , NF-kappa B/metabolism , Protein Binding , Cyclization
3.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37796985

ABSTRACT

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Subject(s)
COVID-19 , Measles , Mumps , Cricetinae , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Measles-Mumps-Rubella Vaccine , Antibodies, Viral , Broadly Neutralizing Antibodies , Immunoglobulin G , Mesocricetus , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
4.
J Med Virol ; 95(4): e28687, 2023 04.
Article in English | MEDLINE | ID: mdl-36941778

ABSTRACT

Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.


Subject(s)
COVID-19 , Cricetinae , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines , Pandemics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Measles virus/genetics , Proline , Antibodies, Viral
5.
Proc Natl Acad Sci U S A ; 119(42): e2123338119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36240321

ABSTRACT

5-methylcytosine (m5C) is one of the most prevalent modifications of RNA, playing important roles in RNA metabolism, nuclear export, and translation. However, the potential role of RNA m5C methylation in innate immunity remains elusive. Here, we show that depletion of NSUN2, an m5C methyltransferase, significantly inhibits the replication and gene expression of a wide range of RNA and DNA viruses. Notably, we found that this antiviral effect is largely driven by an enhanced type I interferon (IFN) response. The antiviral signaling pathway is dependent on the cytosolic RNA sensor RIG-I but not MDA5. Transcriptome-wide mapping of m5C following NSUN2 depletion in human A549 cells revealed a marked reduction in the m5C methylation of several abundant noncoding RNAs (ncRNAs). However, m5C methylation of viral RNA was not noticeably altered by NSUN2 depletion. In NSUN2-depleted cells, the host RNA polymerase (Pol) III transcribed ncRNAs, in particular RPPH1 and 7SL RNAs, were substantially up-regulated, leading to an increase of unshielded 7SL RNA in cytoplasm, which served as a direct ligand for the RIG-I-mediated IFN response. In NSUN2-depleted cells, inhibition of Pol III transcription or silencing of RPPH1 and 7SL RNA dampened IFN signaling, partially rescuing viral replication and gene expression. Finally, depletion of NSUN2 in an ex vivo human lung model and a mouse model inhibits viral replication and reduces pathogenesis, which is accompanied by enhanced type I IFN responses. Collectively, our data demonstrate that RNA m5C methylation controls antiviral innate immunity through modulating the m5C methylome of ncRNAs and their expression.


Subject(s)
Interferon Type I , Virus Diseases , 5-Methylcytosine/metabolism , Animals , Antiviral Agents , DEAD Box Protein 58/metabolism , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , Interferons , Ligands , Mice , RNA Polymerase III , Virus Replication/genetics
6.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994646

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Subject(s)
Proline , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Development , Vesicular Stomatitis , Viral Vaccines , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Humans , Mice , Proline/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesicular Stomatitis/virology , Vesiculovirus/immunology , Viral Proteins/immunology , Viral Vaccines/immunology
7.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35895717

ABSTRACT

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles-Mumps-Rubella Vaccine , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Efficacy , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine , Measles-Mumps-Rubella Vaccine/genetics , Measles-Mumps-Rubella Vaccine/immunology , Mesocricetus , Mice , Mumps virus/genetics , Mumps virus/immunology , Proline/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
8.
J Virol ; 95(20): e0059221, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34379509

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vesicular stomatitis Indiana virus/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Brain/virology , COVID-19/immunology , Cell Line , Cytokine Release Syndrome/prevention & control , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Humans , Immunogenicity, Vaccine , Lung/immunology , Lung/pathology , Lung/virology , Mesocricetus , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/enzymology , Vesicular stomatitis Indiana virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
9.
ACS Chem Neurosci ; 12(9): 1506-1518, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33861582

ABSTRACT

MOTS-c is a 16-amino acid mitochondrial derivative peptide reported to be involved in regulating insulin and metabolic homeostasis via the AMP activated protein kinase (AMPK). AMPK agonist AICAR has been reported to improve cognition. Previous reports also pointed out that MOTS-c may be effective as a therapeutic option toward the prevention of the aging processes. Therefore, we investigated the roles of MOTS-c in the memory recognition process. The results showed that central MOTS-c not only enhanced object and location recognition memory formation and consolidation but also ameliorated the memory deficit induced by Aß1-42 or LPS. The memory-ameliorating effects of MOTS-c could be blocked by AMPK inhibitor dorsomorphin. Moreover, MOTS-c treatment significantly increased the phosphorylation of AMPK but not ERK, JNK, and p38 in the hippocampus. The underlying mechanism of MOTS-c neuroprotection may involve inhibiting the activation of astrocytes and microglia and production of proinflammatory cytokines. In addition, we found that peripheral administration of MOTS-c does not cross the blood-brain barrier (BBB) and plays an effect. In order to improve the brain intake of MOTS-c, we screen out (PRR)5, a cell penetrating peptides, as a carrier for MOTS-c into the brain. Then in the NOR task, intranasal or intravenous MP (cell-penetrating MOTS-c analogue) showed good memory performance on memory formation, memory consolidation, and memory impairment. Near-infrared fluorescent experiments showed the real-time biodistribution in brain after intranasal or intravenous infusion of MP. These results suggested that MOTS-c might be a new potential target for treatment of cognitive decline in AD.


Subject(s)
Amyloid beta-Peptides , Lipopolysaccharides , Humans , Lipopolysaccharides/toxicity , Memory Disorders/drug therapy , Peptide Fragments , Tissue Distribution
10.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33688034

ABSTRACT

The current pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights an urgent need to develop a safe, efficacious, and durable vaccine. Using a measles virus (rMeV) vaccine strain as the backbone, we developed a series of recombinant attenuated vaccine candidates expressing various forms of the SARS-CoV-2 spike (S) protein and its receptor binding domain (RBD) and evaluated their efficacy in cotton rat, IFNAR-/-mice, IFNAR-/--hCD46 mice, and golden Syrian hamsters. We found that rMeV expressing stabilized prefusion S protein (rMeV-preS) was more potent in inducing SARS-CoV-2-specific neutralizing antibodies than rMeV expressing full-length S protein (rMeV-S), while the rMeVs expressing different lengths of RBD (rMeV-RBD) were the least potent. Animals immunized with rMeV-preS produced higher levels of neutralizing antibody than found in convalescent sera from COVID-19 patients and a strong Th1-biased T cell response. The rMeV-preS also provided complete protection of hamsters from challenge with SARS-CoV-2, preventing replication in lungs and nasal turbinates, body weight loss, cytokine storm, and lung pathology. These data demonstrate that rMeV-preS is a safe and highly efficacious vaccine candidate, supporting its further development as a SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Genetic Vectors , Measles virus , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/pathology , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Gene Expression , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunization , Immunogenicity, Vaccine , Measles virus/genetics , Measles virus/immunology , Mice , Mice, Transgenic , Rats , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/genetics
11.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32999025

ABSTRACT

Human respiratory syncytial virus (RSV) is the leading viral cause of lower respiratory tract disease in infants and children worldwide. Currently, there are no FDA-approved vaccines to combat this virus. The large (L) polymerase protein of RSV replicates the viral genome and transcribes viral mRNAs. The L protein is organized as a core ring-like domain containing the RNA-dependent RNA polymerase and an appendage of globular domains containing an mRNA capping region and a cap methyltransferase region, which are linked by a flexible hinge region. Here, we found that the flexible hinge region of RSV L protein is tolerant to amino acid deletion or insertion. Recombinant RSVs carrying a single or double deletion or a single alanine insertion were genetically stable, highly attenuated in immortalized cells, had defects in replication and spread, and had a delay in innate immune cytokine responses in primary, well-differentiated, human bronchial epithelial (HBE) cultures. The replication of these recombinant viruses was highly attenuated in the upper and lower respiratory tracts of cotton rats. Importantly, these recombinant viruses elicited high levels of neutralizing antibody and provided complete protection against RSV replication. Taken together, amino acid deletions or insertions in the hinge region of the L protein can serve as a novel approach to rationally design genetically stable, highly attenuated, and immunogenic live virus vaccine candidates for RSV.IMPORTANCE Despite tremendous efforts, there are no FDA-approved vaccines for human respiratory syncytial virus (RSV). A live attenuated RSV vaccine is one of the most promising vaccine strategies for RSV. However, it has been a challenge to identify an RSV vaccine strain that has an optimal balance between attenuation and immunogenicity. In this study, we generated a panel of recombinant RSVs carrying a single and double deletion or a single alanine insertion in the large (L) polymerase protein that are genetically stable, sufficiently attenuated, and grow to high titer in cultured cells, while retaining high immunogenicity. Thus, these recombinant viruses may be promising vaccine candidates for RSV.


Subject(s)
Methyltransferases/genetics , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Vaccines, Attenuated/immunology , Viral Proteins/genetics , Viral Proteins/immunology , A549 Cells , Amino Acids , Animals , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Cytokines/metabolism , Humans , Lung/pathology , Lung/virology , Methyltransferases/chemistry , Models, Molecular , RNA, Messenger , RNA-Dependent RNA Polymerase , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/prevention & control , Sigmodontinae , Vero Cells , Viral Proteins/chemistry , Virus Replication
12.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: mdl-32554698

ABSTRACT

The nonstructural protein 1 (NS1) of several flaviviruses, including West Nile, dengue, and yellow fever viruses, is capable of inducing variable degrees of protection against flavivirus infection in animal models. However, the immunogenicity of NS1 protein of Zika virus (ZIKV) is less understood. Here, we determined the efficacy of ZIKV NS1-based vaccine candidates using two delivery platforms, methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV) and a DNA vaccine. We first show that expression of ZIKV NS1 could be significantly enhanced by optimizing the signal peptide. A single dose of mtdVSV-NS1-based vaccine or two doses of DNA vaccine induced high levels of NS1-specfic antibody and T cell immune responses but provided only partial protection against ZIKV viremia in BALB/c mice. In Ifnar1-/- mice, neither NS1-based vaccine provided protection against a lethal high dose (105 PFU) ZIKV challenge, but mtdVSV-NS1-based vaccine prevented deaths from a low dose (103 PFU) challenge, though they experienced viremia and body weight loss. We conclude that ZIKV NS1 alone conferred substantial, but not complete, protection against ZIKV infection. Nevertheless, these results highlight the value of ZIKV NS1 for vaccine development.IMPORTANCE Most Zika virus (ZIKV) vaccine research has focused on the E or prM-E proteins and the induction of high levels of neutralizing antibodies. However, these ZIKV neutralizing antibodies cross-react with other flaviviruses, which may aggravate the disease via an antibody-dependent enhancement (ADE) mechanism. ZIKV NS1 protein may be an alternative antigen for vaccine development, since antibodies to NS1 do not bind to the virion, thereby eliminating the risk of ADE. Here, we show that recombinant VSV and DNA vaccines expressing NS1, alone, confer partial protection against ZIKV infection in both immunocompetent and immunodeficient mice, highlighting the value of NS1 as a potential vaccine candidate.


Subject(s)
Vaccines, DNA/immunology , Vesicular stomatitis Indiana virus/immunology , Viral Nonstructural Proteins/immunology , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Reactions , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Vaccines, DNA/genetics , Vesicular Stomatitis/prevention & control , Viral Nonstructural Proteins/genetics , Zika Virus Infection/virology
13.
Nat Microbiol ; 5(4): 584-598, 2020 04.
Article in English | MEDLINE | ID: mdl-32015498

ABSTRACT

Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.


Subject(s)
Adenosine/analogs & derivatives , DEAD Box Protein 58/genetics , Immune Evasion/genetics , Interferon-beta/genetics , Metapneumovirus/immunology , RNA, Viral/genetics , A549 Cells , Adenosine/immunology , Adenosine/metabolism , Animals , Chlorocebus aethiops , DEAD Box Protein 58/immunology , Gene Expression Regulation , Genome, Viral/immunology , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-beta/immunology , Metapneumovirus/genetics , Metapneumovirus/growth & development , NF-kappa B/genetics , NF-kappa B/immunology , Paramyxoviridae Infections/genetics , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/virology , RNA, Viral/immunology , Receptors, Immunologic , Sigmodontinae , Signal Transduction , THP-1 Cells , Vero Cells , Virion/genetics , Virion/growth & development , Virion/immunology
14.
Front Immunol ; 10: 2707, 2019.
Article in English | MEDLINE | ID: mdl-31849936

ABSTRACT

Background: Accumulating evidence suggests inhibiting neuroinflammation as a potential target in therapeutic or preventive strategies for Alzheimer's disease (AD). MAPK-activated protein kinase II (MK2), downstream kinase of p38 mitogen activated protein kinase (MAPK) p38 MAPK, was unveiled as a promising option for the treatment of AD. Increasing evidence points at MK2 as involved in neuroinflammatory responses. MMI-0100, a cell-penetrating peptide inhibitor of MK2, exhibits anti-inflammatory effects and is in current clinical trials for the treatment of pulmonary fibrosis. Therefore, it is important to understand the actions of MMI-0100 in neuroinflammation. Methods: The mouse memory function was evaluated using novel object recognition (NOR) and object location recognition (OLR) tasks. Brain hippocampus tissue samples were analyzed by quantitative PCR, Western blotting, and immunostaining. Near-infrared fluorescent and confocal microscopy experiments were used to detect the brain uptake and distribution after intranasal MMI-0100 application. Results: Central MMI-0100 was able to ameliorate the memory deficit induced by Aß1-42 or LPS in novel object and location memory tasks. MMI-0100 suppressed LPS-induced activation of astrocytes and microglia, and dramatically decreased a series of pro-inflammatory cytokines such as TNF-α, IL-6, IL-1ß, COX-2, and iNOS via inhibiting phosphorylation of MK2, but not ERK, JNK, and p38 in vivo and in vitro. Importantly, one of the reasons for the failure of macromolecular protein or peptide drugs in the treatment of AD is that they cannot cross the blood-brain barrier. Our data showed that intranasal administration of MMI-0100 significantly ameliorates the memory deficit induced by Aß1-42 or LPS. Near-infrared fluorescent and confocal microscopy experiment results showed that a strong fluorescent signal, coming from mouse brains, was observed at 2 h after nasal applications of Cy7.5-MMI-0100. However, brains from control mice treated with saline or Cy7.5 alone displayed no significant signal. Conclusions: MMI-0100 attenuates Aß1-42- and LPS-induced neuroinflammation and memory impairments via the MK2 signaling pathway. Meanwhile, these data suggest that the MMI-0100/MK2 system may provide a new potential target for treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Astrocytes/physiology , Hippocampus/metabolism , MAP Kinase Kinase 2/metabolism , Memory Disorders/drug therapy , Neurogenic Inflammation/drug therapy , Peptides/therapeutic use , Administration, Intranasal , Amyloid beta-Peptides/immunology , Animals , Autoantigens/immunology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Hippocampus/pathology , Humans , Inflammation Mediators/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , Male , Mice , Mice, Inbred Strains , Peptide Fragments/immunology , Peptides/pharmacology , Signal Transduction
15.
Nat Commun ; 10(1): 4595, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31597913

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent internal modification of mRNAs in most eukaryotes. Here we show that RNAs of human respiratory syncytial virus (RSV) are modified by m6A within discreet regions and that these modifications enhance viral replication and pathogenesis. Knockdown of m6A methyltransferases decreases RSV replication and gene expression whereas knockdown of m6A demethylases has the opposite effect. The G gene transcript contains the most m6A modifications. Recombinant RSV variants expressing G transcripts that lack particular clusters of m6A display reduced replication in A549 cells, primary well differentiated human airway epithelial cultures, and respiratory tracts of cotton rats. One of the m6A-deficient variants is highly attenuated yet retains high immunogenicity in cotton rats. Collectively, our results demonstrate that viral m6A methylation upregulates RSV replication and pathogenesis and identify viral m6A methylation as a target for rational design of live attenuated vaccine candidates for RSV and perhaps other pneumoviruses.


Subject(s)
Adenosine/analogs & derivatives , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Virus Replication/immunology , A549 Cells , Adenosine/genetics , Adenosine/immunology , Adenosine/metabolism , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Female , HeLa Cells , Humans , Male , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/pathogenicity , Sigmodontinae , Up-Regulation/immunology , Vaccines, Attenuated/immunology , Vero Cells , Virulence/genetics , Virulence/immunology , Virus Replication/genetics
16.
Viruses ; 11(5)2019 05 16.
Article in English | MEDLINE | ID: mdl-31100802

ABSTRACT

Human norovirus (HuNoV) is responsible for more than 95% of outbreaks of acute nonbacterial gastroenteritis worldwide. Despite major efforts, there are no vaccines or effective therapeutic interventions against this virus. Chicken immunoglobulin Y (IgY)-based passive immunization has been shown to be an effective strategy to prevent and treat many enteric viral diseases. Here, we developed a highly efficient bioreactor to generate high titers of HuNoV-specific IgY in chicken yolks using a recombinant vesicular stomatitis virus expressing HuNoV capsid protein (rVSV-VP1) as an antigen. We first demonstrated that HuNoV VP1 protein was highly expressed in chicken cells infected by rVSV-VP1. Subsequently, we found that White Leghorn hens immunized intramuscularly with rVSV-VP1 triggered a high level of HuNoV-specific yolk IgY antibodies. The purified yolk IgY was efficiently recognized by HuNoV virus-like particles (VLPs). Importantly, HuNoV-specific IgY efficiently blocked the binding of HuNoV VLPs to all three types (A, B, and O) of histo-blood group antigens (HBGAs), the attachment factors for HuNoV. In addition, the receptor blocking activity of IgY remained stable at temperature below 70 °C and at pH ranging from 4 to 9. Thus, immunization of hens with VSV-VP1 could be a cost-effective and practical strategy for large-scale production of anti-HuNoV IgY antibodies for potential use as prophylactic and therapeutic treatment against HuNoV infection.


Subject(s)
Chickens/immunology , Egg Yolk/immunology , Immunoglobulins/immunology , Norovirus/immunology , Vaccination , Vesicular Stomatitis/virology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Blood Group Antigens , Caliciviridae Infections/immunology , Capsid Proteins , Female , Gastroenteritis/virology , Gene Expression Regulation, Viral , Humans , Immunization , Immunization, Passive , Kinetics , Viral Structural Proteins
17.
ACS Appl Mater Interfaces ; 11(10): 10292-10300, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30773877

ABSTRACT

Magnetic hydrogels have promising applications in flexible electronics, biomedical devices, and soft robotics. However, most existing magnetic hydrogels are fragile and suffer insufficient magnetic response. In this paper, we present a new approach to fabricate a strong, tough, and adhesive magnetic hydrogel with nontoxic polyacrylamide (PAAm) hydrogel as the matrix and the functional additive [3-(trimethoxysilyl)propyl methacrylate coated Fe3O4] as the inclusions. This magnetic hydrogel not only offers a relatively high modulus and toughness compared to the pure hydrogel but also responds to the magnetic field rapidly because of high magnetic particle content (up to 60%, with respect to the total weight of the polymers and water). The hydrogel can be bonded to hydroxyl-rich hard and soft surfaces. Magnetic hydrogel with polydimethylsiloxane (PDMS) coating exhibits excellent underwater performance. The bonding between magnetic hydrogel and PDMS is very stable even under cyclic loading. An artificial muscle and its magnetomechanical coupling performance are demonstrated using this hydrogel. The adhesive tough magnetic hydrogel will open up extensive applications in many fields, such as controlled drug delivery systems, coating of soft devices, and microfluidics. The strategy is applicable to other functional soft materials.

18.
Front Pharmacol ; 9: 767, 2018.
Article in English | MEDLINE | ID: mdl-30072893

ABSTRACT

Cortistatin-14 (CST-14), a recently discovered cyclic neuropeptide, can bind to all five cloned somatostatin receptors (SSTRs) and ghrelin receptor to exert its biological activities and co-exists with GABA within the cortex and hippocampus. However, the role of CST-14 in the control of depression processes is not still clarified. Here, we tested the behavioral effects of CST-14 in the in a variety of classical rodent models of depression [forced swimming test (FST), tail suspension test (TST) and novelty-suppressed feeding test]. In the models of depression, CST-14 produced antidepressant-like effects, and does not altered locomotor activity levels. And, we found that CST-14 mRNA and BDNF mRNA were significantly decreased in the hippocampus and cortex after mice exposed to stress. Further data show that i.c.v. administration of CST-14 produce rapid antidepressant effects, and does not altered locomotor activity levels. Then these antidepressant-like effects were significantly reversed by [D-Lys3]GHRP-6 (ghrelin receptor antagonist), but not c-SOM (SSTRs antagonist). Meanwhile, the effects of some neurotransmitter blockers indicates that only GABAA system, but not CRF1 receptor, α/ß-adrenergic receptor, is involved in the antidepressant effect of CST-14. The effects of the mTOR inhibitor (rapamycin), the PI3K inhibitor (LY294002) and the p-ERK1/2 inhibitor (U0126) suggesting that the ERK/mTOR or PI3K/Akt/mTOR signaling pathway is not involved in the antidepressant effects of CST-14. Interestingly, intranasal administration of CST-14 led to reducing depressive-like behavior, and near-infrared fluorescent experiments showed the real-time in vivo bio-distribution in brain after intranasal infusion of Cy7.5-CST-14. Taken all together, the results of present study point to a role for CST-14 in the modulation of depression processes via the ghrelin and GABAA receptor, and suggest cortistation may represent a novel strategy for the treatment of depression disorders. Highlights: -CST-14 and BDNF mRNA are decreased in hippocampus and cortex once mice exposed to stress.-i.c.v. or intranasal administration of CST-14 produce rapid antidepressant effects.-NIR fluorescence imaging detected the brain uptake and distribution after intranasal CST-14.-Antidepressant effects of CST-14 were only related to ghrelin and GABAA system.-Co-injection of CST-14 and NPS produce antidepressant effect, and do not impair memory.

19.
Nat Commun ; 9(1): 3067, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30076287

ABSTRACT

Current efforts to develop Zika virus (ZIKV) subunit vaccines have been focused on pre-membrane (prM) and envelope (E) proteins, but the role of NS1 in ZIKV-specific immune response and protection is poorly understood. Here, we develop an attenuated recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing ZIKV prM-E-NS1 as a polyprotein. This vectored vaccine candidate is attenuated in mice, where a single immunization induces ZIKV-specific antibody and T cell immune responses that provide protection against ZIKV challenge. Co-expression of prM, E, and NS1 induces significantly higher levels of Th2 and Th17 cytokine responses than prM-E. In addition, NS1 alone is capable of conferring partial protection against ZIKV infection in mice even though it does not induce neutralizing antibodies. These results demonstrate that attenuated rVSV co-expressing prM, E, and NS1 is a promising vaccine candidate for protection against ZIKV infection and highlights an important role for NS1 in ZIKV-specific cellular immune responses.


Subject(s)
Polyproteins/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Antigens, Viral/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Genetic Vectors/immunology , Male , Mice , Mice, Inbred BALB C , Polyproteins/genetics , Th17 Cells/metabolism , Th2 Cells/metabolism , Vaccination , Vaccines, Attenuated , Vaccines, DNA/immunology , Vaccines, Synthetic , Vesiculovirus/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Nonstructural Proteins/genetics , Viral Vaccines/genetics , Zika Virus/genetics , Zika Virus/immunology , Zika Virus Infection/immunology
20.
Pharmacol Rep ; 70(2): 355-363, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29477944

ABSTRACT

BACKGROUND: This study aimed to investigate the functional roles of Cortistatin-14 (CST-14) in the gastrointestinal (GI) motility. METHODS: For in vivo study, mice were randomly divided into control, ip injected CST-14 (0.1, 0.5, 1, 5, 10mg/kg)+control group, icv injected CST-14 (5µg)+control group, dextran sulfate sodium-induced colitis group, CST-14+colitis group, castor oil-induced diarrhea group, CST-14+diarrhea group. We carried out these experiments by quantitative real-time PCR, GI transit, bead expulsion and fecal pellet output. For in vitro study, effects of CST-14 were investigated in the longitudinal and circular muscle contractions of jejum, ileum, and colon. RESULTS: In vivo, the expression of CST-14 mRNA was significantly decreased in the colon of colitis mice and CST-14 significantly inhibited GI transit rate in colitis mice, and delayed the emergence of liquid feces in castor oil-induced diarrhea mouse model. Additionally, ip injection of CST-14, but not icv injected, remarkably inhibited GI transit, bead expulsion and fecal pellet output in mice. In vitro assays, CST-14 (10-6M) could relax the rhythms of the longitudinal muscles and circular muscles of the jejunum, ileum and colon of mice. The further study indicated that the roles of CST-14 in mouse GI motility were significantly reversed by c-SOM (sstr1-5 antagonist), especially sstr2 and sstr3 and propranolol (ß-adrenoceptor blocker), suggesting that somatostatin system and noradrenaline system were involved in the inhibiting effects of CST-14 in GI. CONCLUSION: Such inhibiting effects imply that CST-14 system in gastrointestinal motility might be a new target for treatment of GI tract disorder.


Subject(s)
Gastrointestinal Motility/drug effects , Neuropeptides/pharmacology , Peptides, Cyclic/pharmacology , Animals , Colitis/drug therapy , Dextran Sulfate/pharmacology , Diarrhea/drug therapy , Disease Models, Animal , Gastrointestinal Transit/drug effects , Male , Mice , Muscle Contraction/drug effects , Muscle, Smooth/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...