Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rice (N Y) ; 17(1): 24, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587574

ABSTRACT

The quality of rice (Oryza sativa L) is determined by a combination of appearance, flavor, aroma, texture, storage characteristics, and nutritional composition. Rice quality directly influences acceptance by consumers and commercial value. The genetic mechanism underlying rice quality is highly complex, and is influenced by genotype, environment, and chemical factors such as starch type, protein content, and amino acid composition. Minor variations in these chemical components may lead to substantial differences in rice quality. Among these components, starch is the most crucial and influential factor in determining rice quality. In this study, quantitative trait loci (QTLs) associated with eight physicochemical properties related to the rapid viscosity analysis (RVA) profile were identified using a high-density sequence map constructed using recombinant inbred lines (RILs). Fifty-nine QTLs were identified across three environments, among which qGT6.4 was a novel locus co-located across all three environments. By integrating RNA-seq data, we identified the differentially expressed candidate gene OsCRLK2 within the qGT6.4 interval. osclrk2 mutants exhibited decreased gelatinization temperature (GT), apparent amylose content (AAC) and viscosity, and increased chalkiness. Furthermore, osclrk2 mutants exhibited downregulated expression of the majority of starch biosynthesis-related genes compared to wild type (WT) plants. In summary, OsCRLK2, which encodes a receptor-like protein kinase, appears to consistently influence rice quality across different environments. This discovery provides a new genetic resource for use in the molecular breeding of rice cultivars with improved quality.

2.
Physiol Meas ; 42(4)2021 05 11.
Article in English | MEDLINE | ID: mdl-33761471

ABSTRACT

Objective. This study aimed to prove that there is a sudden change in the human physiology system when switching from one sleep stage to another and physical threshold-based sample entropy (SampEn) is able to capture this transition in an RR interval time series from patients with disorders such as sleep apnea.Approach. Physical threshold-based SampEn was used to analyze different sleep-stage RR segments from sleep apnea subjects in the St. Vincents University Hospital/University College Dublin Sleep Apnea Database, and SampEn differences were compared between two consecutive sleep stages. Additionally, other standard heart rate variability (HRV) measures were also analyzed to make comparisons.Main results. The findings suggested that the sleep-to-wake transitions presented a SampEn decrease significantly larger than intra-sleep ones (P < 0.01), which outperformed other standard HRV measures. Moreover, significant entropy differences between sleep and subsequent wakefulness appeared when the previous sleep stage was either S1 (P < 0.05), S2 (P < 0.01) or S4 (P < 0.05).Significance. The results demonstrated that physical threshold-based SampEn has the capability of depicting physiological changes in the cardiovascular system during the sleep-to-wake transition in sleep apnea patients and it is more reliable than the other analyzed HRV measures. This noninvasive HRV measure is a potential tool for further evaluation of sleep physiological time series.


Subject(s)
Sleep Apnea Syndromes , Entropy , Heart Rate , Humans , Sleep , Wakefulness
3.
Entropy (Basel) ; 22(4)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-33286185

ABSTRACT

Sample entropy (SampEn) is widely used for electrocardiogram (ECG) signal analysis to quantify the inherent complexity or regularity of RR interval time series (i.e., heart rate variability (HRV)), with the hypothesis that RR interval time series in pathological conditions output lower SampEn values. However, ectopic beats can significantly influence the entropy values, resulting in difficulty in distinguishing the pathological situation from normal situations. Although a theoretical operation is to exclude the ectopic intervals during HRV analysis, it is not easy to identify all of them in practice, especially for the dynamic ECG signal. Thus, it is important to suppress the influence of ectopic beats on entropy results, i.e., to improve the robustness and stability of entropy measurement for ectopic beats-inserted RR interval time series. In this study, we introduced a physical threshold-based SampEn method, and tested its ability to suppress the influence of ectopic beats for HRV analysis. An experiment on the PhysioNet/MIT RR Interval Databases showed that the SampEn use physical meaning threshold has better performance not only for different data types (normal sinus rhythm (NSR) or congestive heart failure (CHF) recordings), but also for different types of ectopic beat (atrial beats, ventricular beats or both), indicating that using a physical meaning threshold makes SampEn become more consistent and stable.

4.
Entropy (Basel) ; 22(5)2020 May 02.
Article in English | MEDLINE | ID: mdl-33286292

ABSTRACT

Due to the wide inter- and intra-individual variability, short-term heart rate variability (HRV) analysis (usually 5 min) might lead to inaccuracy in detecting heart failure. Therefore, RR interval segmentation, which can reflect the individual heart condition, has been a key research challenge for accurate detection of heart failure. Previous studies mainly focus on analyzing the entire 24-h ECG recordings from all individuals in the database which often led to poor detection rate. In this study, we propose a set of data refinement procedures, which can automatically extract heart failure segments and yield better detection of heart failure. The procedures roughly contain three steps: (1) select fast heart rate sequences, (2) apply dynamic time warping (DTW) measure to filter out dissimilar segments, and (3) pick out individuals with large numbers of segments preserved. A physical threshold-based Sample Entropy (SampEn) was applied to distinguish congestive heart failure (CHF) subjects from normal sinus rhythm (NSR) ones, and results using the traditional threshold were also discussed. Experiment on the PhysioNet/MIT RR Interval Databases showed that in SampEn analysis (embedding dimension m = 1, tolerance threshold r = 12 ms and time series length N = 300), the accuracy value after data refinement has increased to 90.46% from 75.07%. Meanwhile, for the proposed procedures, the area under receiver operating characteristic curve (AUC) value has reached 95.73%, which outperforms the original method (i.e., without applying the proposed data refinement procedures) with AUC of 76.83%. The results have shown that our proposed data refinement procedures can significantly improve the accuracy in heart failure detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...