Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 39(4): 633-641, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29323335

ABSTRACT

Glucocorticoid (GC)-induced osteoporosis (GIO) is characterized by impaired bone formation, which can be alleviated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. In this study we investigated the molecular mechanisms underlying GC-induced modulation of osteogenesis as well as the possibility of using tanshinol to interfere with GIO. Female SD rats aged 4 months were orally administered distilled water (Con), prednisone (GC, 5 mg·kg-1·d-1), GC plus tanshinol (Tan, 16 mg·kg-1·d-1) or GC plus resveratrol (Res, 5 mg·kg-1·d-1) for 14 weeks. After the rats were sacrificed, samples of bone tissues were collected. The changes in bone formation were assessed using Micro-CT, histomorphometry, and biomechanical assays. Expression of Kruppel-like factor 15 (KLF15), peroxisome proliferator-activated receptor γ 2 (PPARγ 2) and other signaling proteins in skeletal tissue was measured with Western blotting and quantitative RT-PCR. GC treatment markedly increased the expression of KLF15, PPARγ2, C/EBPα and aP2, which were related to adipogenesis, upregulated FoxO3a pathway proteins (FoxO3a and Gadd45a), and suppressed the canonical Wnt signaling (ß-catenin and Axin2), which was required for osteogenesis. Thus, GC significantly decreased bone mass and bone quality. Co-treatment with Tan or Res effectively counteracted GC-impaired bone formation, suppressed GC-induced adipogenesis, and restored abnormal expression of the signaling molecules in GIO rats. We conclude that tanshinol counteracts GC-decreased bone formation by inhibiting marrow adiposity via the KLF15/PPARγ2/FoxO3a/Wnt pathway.


Subject(s)
Adipogenesis/drug effects , Caffeic Acids/therapeutic use , Osteogenesis/drug effects , Osteoporosis/drug therapy , Wnt Signaling Pathway/drug effects , Adipocytes/metabolism , Animals , Body Weight/drug effects , Bone Marrow/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Down-Regulation , Fatty Acid-Binding Proteins/genetics , Female , Forkhead Box Protein O3/genetics , Kruppel-Like Transcription Factors/genetics , PPAR gamma/genetics , Prednisone/administration & dosage , Prednisone/pharmacology , Rats, Sprague-Dawley , Resveratrol , Stilbenes/administration & dosage , Stilbenes/pharmacology , Up-Regulation , Wnt Signaling Pathway/genetics
2.
Funct Integr Genomics ; 14(3): 559-70, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25056561

ABSTRACT

Panax quinquefolius is one of perennial herbs and well known for its outstanding pharmacological activity. Ginsenosides are thought to be the main active ingredients in P. quinquefolius and exist in many kinds of plant genus Panax (ginseng). Protopanaxatriol synthase, which is considered cytochrome P450 (CYP450) in ginsenoside biosynthesis pathway can convert protopanaxadiol into protopanaxatriol. However, the protopanaxatriol synthase gene in P. quinquefolius has not been identified. Here, we cloned and identified a protopanaxatriol synthase gene from P. quinquefolius (CYP6H, GenBank accession no. KC190491) at the first time, reverse transcription-PCR (RT-PCR) analysis showed no obvious transcription change of CYP6H in methyl jasmonate (MeJA)-induced hairy roots. Ectopic expression of CYP6H in Saccharomyces cerevisiae resulted in the production of protopanaxatriol with added exogenous protopanaxadiol and confirmed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC/APCIMS). Moreover, high-performance liquid chromatography (HPLC) analysis shows that RNA interferences of CYP6H in transgenic hairy roots could increase the accumulation of protopanaxadiol-type ginsenosides and decrease the accumulation of protopanaxatriol-type ginsenosides, whereas the effect of overexpression CYP6H in transgenic hairy roots was contrary. Our study indicated that CYP6H is a gene encoding protopanaxadiol 6-hydroxylase which could convert protopanaxadiol into protopanaxatriol in P. quinquefolius ginsenoside biosynthesis, we also have confirmed the function of CYP6H on effect accumulation of ginsenosides.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Ginsenosides/biosynthesis , Panax/genetics , Plant Proteins/genetics , Plant Roots/genetics , Amino Acid Sequence , Aryl Hydrocarbon Hydroxylases/chemistry , Cloning, Molecular , Molecular Sequence Data , Panax/enzymology , Phylogeny , Plant Proteins/chemistry , Plant Roots/enzymology , Saccharomyces cerevisiae , Sapogenins/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...