Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 191(5): e116-e120, 2020 12.
Article in English | MEDLINE | ID: mdl-33460063

ABSTRACT

Immune cells have an uncertain function during the progression of extranodal natural killer/T-cell lymphoma (ENKTL). The present study determined the distribution, phenotype, and clinical significance of B lymphocytes in ENKTL. Immunohistochemistry indicated high infiltration of CD20+ B lymphocytes in the tumour tissues of 40% of the patients, and that a high infiltration correlated with better overall survival. Moreover, B lymphocytes had an active mature phenotype in situ and suppressed the proliferation of ENKTL cells in vitro. These results suggest that tumour infiltration of CD20+ B lymphocytes may be a new prognostic indicator for patients with ENKTL.


Subject(s)
Antigens, CD20/metabolism , Lymphocytes, Tumor-Infiltrating , Lymphoma, Extranodal NK-T-Cell , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Disease-Free Survival , Female , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Lymphoma, Extranodal NK-T-Cell/metabolism , Lymphoma, Extranodal NK-T-Cell/mortality , Lymphoma, Extranodal NK-T-Cell/pathology , Male , Survival Rate
2.
ACS Appl Mater Interfaces ; 9(50): 43478-43489, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29116741

ABSTRACT

Interventional embolization is a popular minimally invasive vascular therapeutic technique and has been widely applied for hepatocellular carcinoma (HCC) therapy. However, harmful effects caused by transcatheter arterial chemoembolization (TACE) and radioembolization, such as the toxicity of chemotherapy or excessive radiation damage, are serious disadvantages and significantly reduce the therapeutic efficacy. Here, a synergistic therapeutic strategy combined transcatheter arterial embolization and magnetic ablation (TAEMA) by using poly(lactic-co-glycolic acid) (PLGA)-magnetic microspheres (MMs) has been successfully applied to orthotopic VX2 liver tumors of rabbits. These MMs fabricated by novel rotating membrane emulsification system with well-controlled sizes (100-1000 µm) exhibited extremely low hemolysis ratio and excellent biocompatibility with HepG2 cells and L02 cells. Moreover, experimental results demonstrated that, while exposed to alternating magnetic field (AMF) after TAE, the tumor edge could be heated up by more than 15 °C both in vivo and in vitro, whereas only a negligible increase of temperature was observed in the normal hepatic parenchyma (NHP) nearby. Sufficient temperature increase induces apoptosis of tumor cells. This can further inhibit the tumor angiogenesis and results in necrosis compared to the rabbits only treated with TAE. In stark contrast, tumors rapidly grow and subtotal metastasis occurs in the lungs or kidneys, causing severe complications for rabbits only irradiated under AMF. Importantly, the results from the biochemical examination and the gene expression of relative HCC markers further confirmed that the treatment protocol using PLGA-MMs could achieve good biosafety and excellent therapeutic efficacy, which are promising for liver cancer therapy.


Subject(s)
Microspheres , Animals , Carcinoma, Hepatocellular , Glycols , Lactic Acid , Liver Neoplasms , Magnetics , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits
3.
Chemistry ; 22(33): 11807-15, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27381301

ABSTRACT

Thermal decomposition, as the main synthetic procedure for the synthesis of magnetic nanoparticles (NPs), is facing several problems, such as high reaction temperatures and time consumption. An improved a microwave-assisted thermal decomposition procedure has been developed by which monodisperse Fe3 O4 NPs could be rapidly produced at a low aging temperature with high yield (90.1 %). The as-synthesized NPs show excellent inductive heating and MRI properties in vitro. In contrast, Fe3 O4 NPs synthesized by classical thermal decomposition were obtained in very low yield (20.3 %) with an overall poor quality. It was found for the first time that, besides precursors and solvents, magnetic NPs themselves could be heated by microwave irradiation during the synthetic process. These findings were demonstrated by a series of microwave-heating experiments, Raman spectroscopy and vector-network analysis, indicating that the initially formed magnetic Fe3 O4 particles were able to transform microwave energy into heat directly and, thus, contribute to the nanoparticle growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...