Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3874, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719826

ABSTRACT

The "terminal hydroxyl group anchoring mechanism" has been studied on metal oxides (Al2O3, CeO2) as well as a variety of noble and transition metals (Ag, Pt, Pd, Cu, Ni, Fe, Mn, and Co) in a number of generalized studies, but there is still a gap in how to regulate the content of terminal hydroxyl groups to influence the dispersion of the active species and thus to achieve optimal catalytic performance. Herein, we utilized AlOOH as a precursor for γ-Al2O3 and induced the transformation of the exposed crystal face of γ-Al2O3 from (110) to (100) by controlling the calcination temperature to generate more terminal hydroxyl groups to anchor Ag species. Experimental results combined with AIMD and DFT show that temperature can drive the atomic rearrangement on the (110) crystal face, thereby forming a structure similar to the atomic arrangement of the (100) crystal face. This resulted in the formation of more terminal hydroxyl groups during the high-temperature calcination of the support (Al-900), which can capture Ag species to form single-atom dispersions, and ultimately develop a stable and efficient single-atom Ag-based catalyst.

2.
Chem Commun (Camb) ; 60(11): 1361-1371, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38213307

ABSTRACT

The current insufficient recycling of commodity polymer waste has resulted in pressing environmental and human health issues in our modern society. In the quest for next-generation polymer materials, chemists have recently shifted their attention to the design of chemically recyclable polymers that can undergo depolymerization to regenerate monomers under mild conditions. During the past decade, ring-closing metathesis reactions have been demonstrated to be a robust approach for the depolymerization of polyolefins, producing low-strain cyclic alkene products which can be repolymerized back to new batches of polymers. In this review, we aim to highlight the recent advances in chemical recycling of polyolefins enabled by ring-closing metathesis depolymerization (RCMD). A library of depolymerizable polyolefins will be covered based on the ring size of their monomers or depolymerization products, including five-membered, six-membered, eight-membered, and macrocyclic rings. Moreover, current limitations, potential applications, and future opportunities of the RCMD approach will be discussed. It is clear from recent research in this field that RCMD represents a powerful strategy towards closed-loop chemical recycling of novel polyolefin materials.

3.
Biomacromolecules ; 24(11): 4695-4704, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37695847

ABSTRACT

Herein, we have developed a drug-loaded matrix metalloproteinase (MMP)-responsive micellar nanoparticle (NP) intended for minimally invasive intravenous injection during the acute phase of myocardial infarction (MI) and prolonged retention in the heart for small-molecule drug delivery. Peptide-polymer amphiphiles (PPAs) bearing a small-molecule MMP inhibitor (MMPi), PD166793, were synthesized via ring-opening metathesis polymerization (ROMP) and formulated into spherical micelles by transitioning to aqueous solution. The resulting micellar NPs underwent MMP-induced aggregation, demonstrating enzyme responsiveness. Using a rat MI model, we observed that these NPs were capable of successfully extravasating into the infarcted region of the heart where they were retained due to the active, enzyme-mediated targeting, remaining detectable after 1 week post administration without increasing macrophage recruitment. Furthermore, in vitro studies show that these NPs demonstrated successful drug release following MMP treatment and maintained drug bioactivity as evidenced by comparable MMP inhibition to free MMPi. This work establishes a targeted NP platform for delivering small-molecule therapeutics to the heart after MI, opening possibilities for myocardial infarction treatment.


Subject(s)
Myocardial Infarction , Nanoparticles , Rats , Animals , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/therapeutic use , Myocardial Infarction/drug therapy , Drug Delivery Systems , Peptides/therapeutic use , Micelles
4.
Adv Healthc Mater ; 12(28): e2301053, 2023 11.
Article in English | MEDLINE | ID: mdl-37498238

ABSTRACT

Diabetes is a global epidemic accompanied by impaired wound healing and increased risk of persistent infections and resistance to standard treatments. Therefore, there is an immense need to develop novel methods to specifically target therapeutics to affected tissues and improve treatment efficacy. This study aims to use enzyme-responsive nanoparticles for the targeted delivery of an anti-inflammatory drug, dexamethasone, to treat inflammation in diabetes. These nanoparticles are assembled from fluorescently-labeled, dexamethasone-loaded peptide-polymer amphiphiles. The nanoparticles are injected in vivo, adjacent to labeled collagen membranes sub-periosteally implanted on the calvaria of diabetic rats. Following their implantation, collagen membrane resorption is linked to inflammation, especially in hyperglycemic individuals. The nanoparticles show strong and prolonged accumulation in inflamed tissue after undergoing a morphological switch into microscale aggregates. Significantly higher remaining collagen membrane area and less inflammatory cell infiltration are observed in responsive nanoparticles-treated rats, compared to control groups injected with free dexamethasone and non-responsive nanoparticles. These factors indicate improved therapeutic efficacy in inflammation reduction. These results demonstrate the potential use of enzyme-responsive nanoparticles as targeted delivery vehicles for the treatment of diabetic and other inflammatory wounds.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Rats , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Inflammation/drug therapy , Collagen , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
5.
J Am Chem Soc ; 145(20): 11185-11194, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37184379

ABSTRACT

Nanoparticles that undergo a localized morphology change to target areas of inflammation have been previously developed but are limited by their lack of biodegradability. In this paper, we describe a low-ring-strain cyclic olefin monomer, 1,3-dimethyl-2-phenoxy-1,3,4,7-tetrahydro-1,3,2-diazaphosphepine 2-oxide (MePTDO), that rapidly polymerizes via ring-opening metathesis polymerization at room temperature to generate well-defined degradable polyphosphoramidates with high monomer conversion (>84%). Efficient MePTDO copolymerizations with norbornene-based monomers are demonstrated, including a norbornenyl monomer functionalized with a peptide substrate for inflammation-associated matrix metalloproteinases (MMPs). The resulting amphiphilic peptide brush copolymers self-assembled in aqueous solution to generate micellar nanoparticles (30 nm in diameter) which exhibit excellent cyto- and hemocompatibility and undergo MMP-induced assembly into micron-scale aggregates. As MMPs are upregulated in the heart postmyocardial infarction (MI), the MMP-responsive micelles were applied to target and accumulate in the infarcted heart following intravenous administration in a rat model of MI. These particles displayed a distinct biodistribution and clearance pattern in comparison to nondegradable analogues. Specifically, accumulation at the site of MI competed with elimination predominantly through the kidney rather than the liver. Together, these results suggest this as a promising new biodegradable platform for inflammation targeted delivery.


Subject(s)
Myocardial Infarction , Nanoparticles , Rats , Animals , Micelles , Tissue Distribution , Peptides , Inflammation , Matrix Metalloproteinases
6.
J Hazard Mater ; 445: 130576, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37055981

ABSTRACT

Sulfate radical (SO4•-)-based heterogonous advanced oxidation processes (AOPs) show promising potential to degrade emerging contaminants, however, regulating the electron structure of a catalyst to promote its catalytic activity is challenging. Herein, a hybrid that consists of Co3O4-x nanocrystals decorated on urchin-like WO2.72 (Co3O4-x/WO2.72) with high-valence W and rich oxygen vacancies (OVs) used to modulate the electronic structure of Co-3d was prepared. The Co3O4-x/WO2.72 that developed exhibited high catalytic activity, activating peroxymonosulfate (PMS), and degrading sulfamerazine (SMR). With the use of Co3O4-x/WO2.72, 100 % degradation of SMR was achieved within 2 min, at a pH of 7, with the reaction rate constant k1 = 3.09 min-1. Both characterizations and density functional theory (DFT) calculations confirmed the formation of OVs and the promotion of catalytic activity. The introduction of WO2.72 greatly regulated the electronic structure of Co3O4-x. Specifically, the introduction of high-valence W enabled the Co-3d band centre to be closer to the Fermi level and enhanced electrons (e-) transfer ability, while the introduction of OVs-Co in Co3O4-x promoted the activity of electrons in the Co-3d orbital and the subsequent catalytic reaction. The reactive oxygen species (ROS) were identified as •OH, SO4•-, and singlet oxygen (1O2) by quenching experiments and electron spin resonance (EPR) analysis. The DFT calculation using the Fukui index indicated the reactive sites in SMR were available for an electrophilic attack, and three degradation pathways were proposed.

7.
Micromachines (Basel) ; 14(3)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36985049

ABSTRACT

In this paper, a structured illumination microscopy (SIM) image reconstruction algorithm combined with notch function (N-SIM) is proposed. This method suppresses the defocus signal in the imaging process by processing the low-frequency signal of the image. The existing super-resolution image reconstruction algorithm produces streak artifacts caused by defocus signal. The experimental results show that the algorithm proposed in our study can well suppress the streak artifacts caused by defocused signals during the imaging process without losing the effective information of the image. The image reconstruction algorithm is used to analyze the mouse hepatocytes, and the image processing tool developed by MATLAB is applied to identify, detect and count the reconstructed images of mitochondria and lipid droplets, respectively. It is found that the mitochondrial activity in oxidative stress induced growth inhibitor 1 (OSGIN1) overexpressed mouse hepatocytes is higher than that in normal cells, and the interaction with lipid droplets is more obvious. This paper provides a reliable subcellular observation platform, which is very meaningful for biomedical work.

8.
Small ; 18(42): e2204390, 2022 10.
Article in English | MEDLINE | ID: mdl-36084173

ABSTRACT

Fabricating ultrathin silicon (Si) channels down to critical dimension (CD) <10 nm, a key capability to implementing cutting-edge microelectronics and quantum charge-qubits, has never been accomplished via an extremely low-cost catalytic growth. In this work, 3D stacked ultrathin Si nanowires (SiNWs) are demonstrated, with width and height of Wnw  = 9.9 ± 1.2 nm (down to 8 nm) and Hnw  = 18.8 ± 1.8 nm, that can be reliably grown into the ultrafine sidewall grooves, approaching to the CD of 10 nm technology node, thanks to a new self-delimited droplet control strategy. Interestingly, the cross-sections of the as-grown SiNW channels can also be easily tailored from fin-like to sheet-like geometries by tuning the groove profile, while a sharply folding guided growth indicates a unique capability to produce closely-packed multiple rows of stacked SiNWs, out of a single run growth, with the minimal use of catalyst metal. Prototype field effect transistors are also successfully fabricated, achieving Ion/off ratio and sub-threshold swing of >106 and 125 mV dec-1 , respectively. These results highlight the unexplored potential of versatile catalytic growth to compete with, or complement, the advanced top-down etching technology in the exploitation of monolithic 3D integration of logic-in-memory, neuromorphic and charge-qubit applications.


Subject(s)
Nanowires , Silicon , Catalysis
9.
Adv Mater ; 33(46): e2007504, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34145625

ABSTRACT

Recent advances in polymer chemistry, materials sciences, and biotechnology have allowed the preclinical development of sophisticated programmable nanomedicines and materials that are able to precisely respond to specific disease-associated triggers and microenvironments. These stimuli, endogenous to the targeted diseases, include pH, redox-state, small molecules, and protein upregulation. Herein, recent advances and innovative approaches in programmable soft materials capable of sensing the aforementioned disease-associated stimuli and responding via a range of dynamic processes including morphological and size transitions, changes in mobility and retention, as well as disassembly are described. In this field generally, the majority of ongoing and past research effort has focused on oncology. Given this interest, examples of the latest innovative approaches to chemo- and immunotherapy treatment strategies for cancer are presented. Moreover, as the field broadens its attention, applications of programmable materials in other diseases are highlighted, with a special focus on cardiovascular disease and diabetes mellitus, where limited attention is paid by the field, but where many promising avenues exist with high potential impact.


Subject(s)
Biocompatible Materials/chemistry , Cardiovascular Diseases/pathology , Diabetes Mellitus/pathology , Nanostructures/chemistry , Neoplasms/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cardiovascular Diseases/metabolism , Diabetes Mellitus/metabolism , Drug Carriers/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Polymers/chemistry , Tumor Microenvironment
10.
Prog Polym Sci ; 1202021 Sep.
Article in English | MEDLINE | ID: mdl-38666185

ABSTRACT

The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.

11.
Angew Chem Int Ed Engl ; 59(43): 19136-19142, 2020 10 19.
Article in English | MEDLINE | ID: mdl-32659039

ABSTRACT

Herein, we report the photoinitiated polymerization-induced self-assembly (photo-PISA) of spherical micelles consisting of proapoptotic peptide-polymer amphiphiles. The one-pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL-1 ) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide-functionalized nanoparticles imbued the proapoptotic "KLA" peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo-PISA in the large-scale synthesis of functional, proteolytically resistant peptide-polymer conjugates for intracellular delivery.


Subject(s)
Apoptosis , Light , Nanoparticles/chemistry , Peptides/chemistry , Polymers/chemistry , Amino Acid Sequence , Cell Survival/drug effects , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Micelles , Polymerization
12.
ACS Macro Lett ; 9(10): 1417-1422, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-35653670

ABSTRACT

We report the synthesis of a degradable polyphosphoramidate via ring-opening metathesis polymerization (ROMP) with the Grubbs initiator (IMesH2)(C5H5N)2(Cl)2Ru═CHPh. Controlled ROMP of a low ring strain diazaphosphepine-based cyclic olefin was achieved at low temperatures to afford well-defined polymers that readily undergo degradation in acidic conditions via the cleavage of the acid-labile phosphoramidate linkages. The diazaphosphepine monomer was compatible in random and block copolymerizations with phenyl and oligo(ethylene glycol) bearing norbornenes. This approach introduced partial or complete degradability into the polymer backbones. With this chemistry, we accessed amphiphilic poly(diazaphosphepine-norbornene) copolymers that could be used to prepare micellar nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...