Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.607
Filter
1.
Comput Biol Med ; 178: 108711, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38852397

ABSTRACT

With the rapid development of information technology and artificial intelligence (AI), people have acquired the abilities and are encouraged to develop intelligent tools and software, which begins to shed light on intelligent and precise food nutrition. Despite the rapid development of such software, disparities still exist in terms of methodology, contents, and implementation strategies. Hence, a set of panoramic profiles is urgently needed to elucidate their values and guide their future development. Here a comprehensive review was conducted aiming to summarize and compare the objects, contents, intelligent algorithms, and functions realized by the already released software in current research. Consequently, 177 AI nutritionists in recent years were collected and analyzed. The advantages, limitations, and trends concerning their application scenarios were analyzed. It was found that AI nutritionists have been gradually advancing the production modes and efficiency of food recognition, dietary recording/monitoring, nutritional assessment, and nutrient/recipe recommendation. Most AI nutritionists have a relatively low level of intelligence. However, new trends combining advanced AI algorithms, intelligent sensors and big data are coming with new applications in real-time and precision nutrition. AI models concerning molecular-level behaviors are becoming the new focus to drive AI nutritionists. Multi-center and multi-level studies have also gradually been realized to be necessary.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124658, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878721

ABSTRACT

Owing to the long-lived decay of triplet excited state, extensive efforts have been devoted to efficient triplet generation for applications covering triplet-triplet annihilation for photon upconversion, photocycloaddition and photoredox catalysis. Among the candidates, nanocrystal-molecule complexes have received tremendous attention for triplet generation because of easier spin flip and negligible energy loss during intersystem crossing. However, the triplet energy transfer (TET) from nanocrystals (NCs) to molecules can be very complicated in actual situation due to intricate energy level alignment and inevitable defect states, which often involves various decay pathes of the excited state competing with TET. Understanding the detailed carrier dynamics in such complexes is strongly necessary for related applications. Here, a CdSe-TCA (5-tetracene carboxylic acid) complex with a Type-II like energy level alignment is synthesized through precisely adjusting the dimension of CdSe NC. Based on series of spectral measurements, especially the transient absorption (TA) spectroscopy, the results show various carrier dynamics including hole-transfer-mediated TET, Förster resonance energy transfer (FRET) and carrier trapping. Although the carrier trapping by defect states in CdSe NC is revealed not associated with the TET from CdSe to TCA, the FRET is proved to competing with the TET process. Both the FRET and defect states should be refrained for efficient TET in such complexes. This study could provide further insight for understanding the carrier dynamics competition in NC-molecule complexes for triplet generation and benefit related optoelectronics applications.

3.
Microbes Infect ; : 105374, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849069

ABSTRACT

OBJECTIVE: The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood. METHODS: Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP. RESULTS: Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4+ T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs. CONCLUSION: We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.

4.
Front Med (Lausanne) ; 11: 1375622, 2024.
Article in English | MEDLINE | ID: mdl-38873205

ABSTRACT

Objective: To investigate the effects of digital health interventions for improving adherence to oral iron supplementation in pregnant women. Literature search: Five databases were searched from their inception to October 2023 with no date restrictions. Study selection: Randomized controlled trials (RCTs) that assessed the effects of digital health interventions on adherence to oral iron supplementation (e.g., tablets and capsules) compared to non-digital health interventions for pregnant women were eligible. Data synthesis: We calculated standardized mean differences (SMDs) and mean differences (MDs) with 95% confidence intervals (CIs) for continuous variables using the inverse variance method. We calculated odds ratios (OR) with 95%CI for categorical variables using the Mantel-Haenszel model. The certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The risk of bias of the included RCTs was assessed using the Cochrane risk of bias tool 2.0. Results: Ten trials with 1,633 participants were included. Based on 7 trials, digital health interventions can improve objective adherence rate comparing with non-digital health interventions (1,289 participants, OR = 4.07 [2.19, 7.57], p < 0.001, I2 = 69%) in pregnant women. Digital health interventions can improve subjective adherence behavior comparing with non-digital health interventions (3 trials, 434 participants, SMD = 0.82 [0.62, 1.01], p < 0.001, I2 = 0%) in pregnant women. Based on 3 trials, digital health interventions can improve tablets consumption comparing with non-digital health interventions (333 participants, SMD = 1.00 [0.57, 1.42], p < 0.001, I2 = 66%) in pregnant women. Digital health interventions can improve hemoglobin level comparing with non-digital health interventions (7 trials, 1,216 participants, MD = 0.59 [0.31, 0.88], p < 0.001, I2 = 93%) in pregnant women. Conclusion: Digital health interventions were effective at improving adherence to oral iron supplementation and hemoglobin levels in pregnant women.

5.
Anal Chem ; 96(24): 10013-10020, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836548

ABSTRACT

Traditional methods for the detection of pathogenic bacteria are time-consuming, less efficient, and sensitive, which affects infection control and bungles illness. Therefore, developing a method to remedy these problems is very important in the clinic to diagnose the pathogenic diseases and guide the rational use of antibiotics. Here, microfluidic electrochemical integrated sensor (MEIS) has been investigated, functionally for rapid, efficient separation and sensitive detection of pathogenic bacteria. Three-dimensional macroporous PDMS and Au nanotube-based electrode are successfully assembled into the modeling microchip, playing the functions of "3D chaotic flow separator" and "electrochemical detector," respectively. The 3D chaotic flow separator enhances the turbulence of the fluid, achieving an excellent bacteria capture efficiency. Meanwhile, the electrochemical detector provides a quantitative signal through enzyme-linked immunoelectrochemistry with improved sensitivity. The microfluidic electrochemical integrated sensor could successfully isolate Candida albicans (C. albicans) in the range of 30-3,000,000 CFU in the saliva matrix with over 95% capture efficiency and sensitively detect C. albicans in 1 h in oral saliva samples. The integrated device demonstrates great potential in the diagnosis of oral candidiasis and is also applicable in the detection of other pathogenic bacteria.


Subject(s)
Candida albicans , Electrochemical Techniques , Candida albicans/isolation & purification , Electrochemical Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Saliva/microbiology , Saliva/chemistry , Electrodes , Humans , Gold/chemistry
6.
Chemosphere ; 361: 142424, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795915

ABSTRACT

As emerging contaminants, micro- and nanoplastics (MNPs) can absorb and leach various toxic chemicals and ultimately endanger the health of the ecological environment and humans. With extensive research on MNPs, knowledge about MNPs in humans, especially their translocation of barriers and potential health effects, is of utmost importance. In this review, we collected literature published from 2000 to 2023, focusing on MNPs on their occurrence in humans, penetrating characteristics in the placental, blood-brain, and blood-testis barriers, and exposure effects on mammalian health. The characteristics and distributions of MNPs in human samples were analyzed, and the results demonstrated that MNPs were ubiquitous in most human samples, except for kidneys and cerebrospinal fluid. In addition, the phenomenon of MNPs crossing barriers and their underlying mechanisms were discussed. We also summarized the potential factors that may affect the barrier crossing and health effects of MNPs, including characteristics of MNPs, exposure doses, administration routes, exposure durations, co-exposure to other pollutants, and genetic predisposition. Exposure to MNPs may cause cytotoxicity, neurotoxicity, and developmental and reproductive toxicity in mammals. People are encouraged to reduce their exposure to MNPs to prevent these adverse health effects. Finally, we discussed the shortcomings of current research on MNPs in humans, providing a valuable reference for understanding and evaluating the potential health risks from MNP exposure in mammals, including humans.

7.
Toxicology ; 505: 153825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710382

ABSTRACT

Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1ß and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 µmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 µM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 µM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1ß and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.


Subject(s)
Cadmium Compounds , Macrophage Activation , Mitophagy , NF-E2-Related Factor 2 , Quantum Dots , Reactive Oxygen Species , Tellurium , Animals , Tellurium/toxicity , Quantum Dots/toxicity , Mice , Reactive Oxygen Species/metabolism , Cadmium Compounds/toxicity , Mitophagy/drug effects , NF-E2-Related Factor 2/metabolism , RAW 264.7 Cells , Macrophage Activation/drug effects , Male , Macrophages/drug effects , Macrophages/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism
8.
Chem Soc Rev ; 53(12): 6295-6321, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38722208

ABSTRACT

In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.

9.
BMC Pulm Med ; 24(1): 227, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730287

ABSTRACT

OBJECTIVES: 18F-fluorodeoxyglucose (FDG) PET/CT has been widely used for the differential diagnosis of cancer. Semi-quantitative standardized uptake value (SUV) is known to be affected by multiple factors and may make it difficult to differentiate between benign and malignant lesions. It is crucial to find reliable quantitative metabolic parameters to further support the diagnosis. This study aims to evaluate the value of the quantitative metabolic parameters derived from dynamic FDG PET/CT in the differential diagnosis of lung cancer and predicting epidermal growth factor receptor (EGFR) mutation status. METHODS: We included 147 patients with lung lesions to perform FDG PET/CT dynamic plus static imaging with informed consent. Based on the results of the postoperative pathology, the patients were divided into benign/malignant groups, adenocarcinoma (AC)/squamous carcinoma (SCC) groups, and EGFR-positive (EGFR+)/EGFR-negative (EGFR-) groups. Quantitative parameters including K1, k2, k3, and Ki of each lesion were obtained by applying the irreversible two-tissue compartmental modeling using an in-house Matlab software. The SUV analysis was performed based on conventional static scan data. Differences in each metabolic parameter among the group were analyzed. Wilcoxon rank-sum test, independent-samples T-test, and receiver-operating characteristic (ROC) analysis were performed to compare the diagnostic effects among the differentiated groups. P < 0.05 were considered statistically significant for all statistical tests. RESULTS: In the malignant group (N = 124), the SUVmax, k2, k3, and Ki were higher than the benign group (N = 23), and all had-better performance in the differential diagnosis (P < 0.05, respectively). In the AC group (N = 88), the SUVmax, k3, and Ki were lower than in the SCC group, and such differences were statistically significant (P < 0.05, respectively). For ROC analysis, Ki with cut-off value of 0.0250 ml/g/min has better diagnostic specificity than SUVmax (AUC = 0.999 vs. 0.70). In AC group, 48 patients further underwent EGFR testing. In the EGFR (+) group (N = 31), the average Ki (0.0279 ± 0.0153 ml/g/min) was lower than EGFR (-) group (N = 17, 0.0405 ± 0.0199 ml/g/min), and the difference was significant (P < 0.05). However, SUVmax and k3 did not show such a difference between EGFR (+) and EGFR (-) groups (P>0.05, respectively). For ROC analysis, the Ki had a cut-off value of 0.0350 ml/g/min when predicting EGFR status, with a sensitivity of 0.710, a specificity of 0.588, and an AUC of 0.674 [0.523-0.802]. CONCLUSION: Although both techniques were specific, Ki had a greater specificity than SUVmax when the cut-off value was set at 0.0250 ml/g/min for the differential diagnosis of lung cancer. At a cut-off value of 0.0350 ml/g/min, there was a 0.710 sensitivity for EGFR status prediction. If EGFR testing is not available for a patient, dynamic imaging could be a valuable non-invasive screening method.


Subject(s)
ErbB Receptors , Fluorodeoxyglucose F18 , Lung Neoplasms , Mutation , Positron Emission Tomography Computed Tomography , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , ErbB Receptors/genetics , Male , Diagnosis, Differential , Female , Middle Aged , Aged , Adult , Radiopharmaceuticals , ROC Curve , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/diagnostic imaging , Aged, 80 and over , Adenocarcinoma/genetics , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Retrospective Studies
10.
Plants (Basel) ; 13(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794399

ABSTRACT

Broccoli is a rich source of diverse bioactive compounds, but how their contents are influenced by different growing seasons and variations in broccoli head sizes remains elusive. To address this question, we quantified sixteen known bioactive compounds and seven minerals in broccoli with varying head sizes obtained in two different growing seasons. Our results suggest that the contents of vitamin C, total phenols, carotenoids, and glucoraphanin were significantly higher in samples from the summer-autumn season, showing increases of 157.46%, 34.74%, 51.80%, and 17.78%, respectively, compared with those from the winter-spring season. Moreover, chlorogenic acid is a phenolic compound with relatively high contents among the six detected, while beta-sitosterol is the sterol with relatively high contents. Further, principal component analysis was conducted to rank the comprehensive scores of the profiles of phenolic compounds, phytosterols, and minerals, demonstrating that the broccoli samples grown during the summer-autumn season achieved the highest composite scores. Our results indicate that broccoli heads from the summer-autumn season are richer in a combination of bioactive compounds and minerals than those from the winter-spring season based on the composite score. This study extends our understanding of the nutrition profiles in broccoli and also lays the foundation for breeding broccoli varieties with improved nutrition quality.

11.
Heliyon ; 10(9): e29925, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707306

ABSTRACT

Background: Radiotherapy is an effective treatment for hepatocellular carcinoma (HCC). Recent studies indicated that N7-methylguanosine (m7G)-associated genes are involved in radioresistance and prognosis of HCC. However, the prognostic value and underlying mechanism of m7G-and radiosensitivity-associated genes are still lacking. Methods: The related statistics of HCC were downloaded from The Cancer Genome Atlas (TCGA). M7G- and radiosensitivity-associated genes were screened and evaluated using correlation, differential, univariate, and multivariate analysis. The least absolute shrinkage and selection operator (LASSO) algorithm was used to establish a prognostic model. Prognostic efficacy, functional analysis, immune cell infiltration,and drug sensitivity of the prognostic model were assessed. The ceRNA network was predicted and evaluated through the StarBase database, correlation analysis, expression analysis, and survival analysis. Result: METTL1, EIF3D, NCBP2, and WDR4 participated in prognosis model construction. The favorable prediction efficiency has been verified in both the training and verification sets. Different risk groups have differences in prognosis outcome, function analysis, immune cell infiltration, and drug sensitivity. NCBP2 can be used to predict the prognosis and has excellent potential in immunotherapy. A prognostic ceRNA network based on the NCBP2/miR-122-5p axis was established. Conclusion: The prognosis model of m7G- and radiosensitivity-related genes is constructed, and widely used in clinical prognosis, immunotherapy, and drug therapy. NCBP2, as a hub gene, may be a prognostic biomarker for HCC and is related to immunotherapy. Establishing the NCBP2/miR-122-5p axis helps study the mechanism of ceRNA and provides new ideas for finding a new candidate biomarker.

12.
J Agric Food Chem ; 72(19): 11080-11093, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690996

ABSTRACT

Amyloid-like aggregation widely occurs during the processing and production of natural proteins, with evidence indicating its presence following the thermal processing of wheat gluten. However, significant gaps remain in understanding the underlying fibrillation mechanisms and structural polymorphisms. In this study, the amyloid-like aggregation behavior of wheat gluten and its components (glutenin and gliadin) during cooking was systematically analyzed through physicochemical assessment and structural characterization. The presence of amyloid-like fibrils (AFs) was confirmed using X-ray diffraction and Congo red staining, while Thioflavin T fluorescence revealed different patterns and rates of AFs growth among wheat gluten, glutenin, and gliadin. AFs in gliadin exhibited linear growth curves, while those in gluten and glutenin showed S-shaped curves, with the shortest lag phase and fastest growth rate (t1/2 = 2.11 min) observed in glutenin. Molecular weight analyses revealed AFs primarily in the 10-15 kDa range, shifting to higher weights over time. Glutenin-derived AFs had the smallest ζ-potential value (-19.5 mV) and the most significant size increase post cooking (approximately 400 nm). AFs in gluten involve interchain reorganization, hydrophobic interactions, and conformational transitions, leading to additional cross ß-sheets. Atomic force microscopy depicted varying fibril structures during cooking, notably longer, taller, and stiffer AFs from glutenin.


Subject(s)
Amyloid , Cooking , Glutens , Triticum , Glutens/chemistry , Triticum/chemistry , Amyloid/chemistry , Gliadin/chemistry , Hot Temperature , Protein Aggregates , Molecular Weight , X-Ray Diffraction
13.
Am J Surg ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38777717

ABSTRACT

BACKGROUND: The burgeoning demand for hepatectomy in elderly patients with hepatocellular carcinoma (HCC) necessitates improved perioperative care. Geriatric populations frequently experience functional decline and frailty, predisposing them to adverse postoperative outcomes. The Barthel Index serves as a reliable measure for assessing functional capacity, and this study evaluates its impact on surgical textbook outcomes (TOs) in elderly HCC patients. METHODS: A multicenter retrospective cohort study analyzed elderly patients (≥70 years) following hepatectomy for HCC between 2013 and 2021. Utilizing a Barthel Index cut-off value of 85, patients were divided into two groups: with and without preoperative functional decline and frailty. The primary outcome was the rate of TO, encompassing seven criteria. TO rates were compared between groups, and multivariate logistic regression analyses identified independent risks for achieving TOs. RESULTS: Of 497 elderly patients, 157 (31.6 â€‹%) exhibited preoperative functional decline and frailty (Barthel Index score <85). The overall TO rate was 58.6 â€‹%. Patients with preoperative Barthel Index score <85 had significantly lower TO rates compared to patients with score ≥85 (29.3 â€‹% vs. 72.1 â€‹%, P â€‹< â€‹0.001). Multivariate analysis revealed preoperative Barthel Index score <85 as an independent risk for achieving TO (odds ratio 3.413, 95 â€‹% confidence interval 1.879-6.198, P â€‹< â€‹0.001). Comparable results were observed in the subgroups of patients undergoing open and laparoscopic hepatectomy. CONCLUSION: Preoperative Barthel Index-based assessment of functional decline and frailty significantly predicts TOs following hepatectomy in elderly HCC patients, enabling identification of high-risk patients and informing preoperative management and postoperative care within geriatric oncology.

14.
Environ Int ; 187: 108719, 2024 May.
Article in English | MEDLINE | ID: mdl-38718677

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Subject(s)
Blood-Brain Barrier , Fluorocarbons , Humans , Blood-Brain Barrier/metabolism , Pilot Projects , Fluorocarbons/blood , Middle Aged , Female , Adult , Male , Glioma , Aged , Environmental Pollutants/blood , Environmental Exposure , Alkanesulfonic Acids/blood , Brain/metabolism
15.
Front Endocrinol (Lausanne) ; 15: 1352770, 2024.
Article in English | MEDLINE | ID: mdl-38699387

ABSTRACT

Background: The efficiency of different first-line treatments, such as first-line surgery and assisted reproductive technology (ART), in women with deep infiltrating endometriosis (DIE) is still unclear due to a lack of direct comparative trials. This systematic review and meta-analysis aim to elucidate and compare the efficacies of first-line treatments in patients with DIE, with an emphasis on fertility outcomes. Methods: An exhaustive search of PubMed Central, SCOPUS, EMBASE, MEDLINE, Cochrane trial registry, Google Scholar, and Clinicaltrials.gov databases was done to identify studies directly comparing first-line surgery and assisted reproductive technology (ART) for DIE, and reporting fertility-related outcomes. Pooled estimates for each of the binary outcomes were reported as odds ratios (ORs) with 95% confidence intervals (CIs). The results were pooled using a random-effects model with the Mantel-Haenszel technique. Results: Our results show that pregnancy rate per patient (OR, 1.47; 95% CI, 0.59 to 3.63), pregnancy rate per cycle (OR, 1.16; 95% CI, 0.45 to 2.99), and live births per patient (OR, 1.66; 95% CI, 0.56 to 4.91) were comparable in DIE patients, treated with surgery or ART as a first line of treatment. When both complete and incomplete surgical DIE excision procedures were taken into account, surgery was associated with a significant enhancement in the pregnancy rate per patient (OR, 1.63; 95% CI, 1.11 to 2.40). Conclusion: The available evidence suggests that both first-line surgery and ART can be effective DIE treatments with similar fertility outcomes. However, further analysis reveals that excluding studies involving endometriomas significantly alters the understanding of treatment efficacy between surgery and ART for DIE-associated infertility. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=426061, identifier CRD42023426061.


Subject(s)
Endometriosis , Infertility, Female , Pregnancy Rate , Reproductive Techniques, Assisted , Humans , Endometriosis/surgery , Female , Pregnancy , Infertility, Female/surgery , Infertility, Female/therapy
17.
Food Microbiol ; 121: 104499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637070

ABSTRACT

In this study, we investigated the impact of microbial interactions on Monascus pigment (MP) production. We established diverse microbial consortia involving Monascus purpureus and Lactobacillus fermentum. The addition of Lactobacillus fermentum (4% at 48 h) to the submerged fermentation of M. purpureus resulted in a significantly higher MP production compared to that achieved using the single-fermentation system. Co-cultivation with immobilized L. fermentum led to a remarkable increase of 59.18% in extracellular MP production, while mixed fermentation with free L. fermentum caused a significant decrease of 66.93% in intracellular MPs, contrasting with a marginal increase of 4.52% observed during co-cultivation with immobilized L. fermentum and the control group respectively. The findings indicate an evident enhancement in cell membrane permeability of M. purpureus when co-cultivated with immobilized L. fementum. Moreover, integrated transcriptomic and metabolomic analyses were conducted to elucidate the regulatory mechanisms underlying MP biosynthesis and secretion following inoculation with immobilized L. fementum, with specific emphasis on glycolysis, steroid biosynthesis, fatty acid biosynthesis, and energy metabolism.


Subject(s)
Monascus , Fermentation , Monascus/genetics , Monascus/metabolism , Pigments, Biological/metabolism , Microbial Consortia , Glycolysis
18.
Article in English | MEDLINE | ID: mdl-38557611

ABSTRACT

MiRNA has distinct physiological functions at various cellular locations. However, few effective computational methods for predicting the subcellular location of miRNA exist, thereby leaving considerable room for improvement. Accordingly, our study proposes the MGFmiRNAloc simplified molecular input line entry system (SMILES) format as a new approach for predicting the subcellular localization of miRNA. Additionally, the graphical convolutional network (GCN) technique was employed to extract the atomic nodes and topological structure of a single base, thereby constructing RNA sequence molecular map features. Subsequently, the channel attention and spatial attention mechanisms (CBAM) were designed to mine deeper for more efficient information. Finally, the prediction module was used to detect the subcellular localization of miRNA. The 10-fold cross-validation and independent test set experiments demonstrate that MGFmiRNAloc outperforms the most sophisticated methods. The results indicate that the new atomic level feature representation proposed in this study could overcome the limitations of small samples and short miRNA sequences, accurately predict the subcellular localization of miRNAs, and be extended to the subcellular localization of other sequences.

19.
Microb Biotechnol ; 17(4): e14454, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568756

ABSTRACT

This study investigates the effectiveness of an exopolysaccharide (EPS)-producing strain (Lactiplantibacillus plantarum L75) alone or in combination with Saccharomyces cerevisiae on the fermentation characteristics, antioxidant capacities and microbial community successions of oat silage stored at various temperatures. A rapid decrease in pH and lactic acid accumulation was observed in silages treated with L. plantarum and S. cerevisiae (LS) as early as 3 days of ensiling (p < 0.05). Over the ensiling period of 7-60 days, L. plantarum (L)-inoculated groups showed the lowest pH, lowest ammonia nitrogen and the highest amount of lactic acid regardless of the storage temperatures. When the oat silage was stored at 15°C, LS-inoculated group exhibited a higher superoxide dismutase (SOD) activity than control and L-inoculated group. Furthermore, the proportion of Lactiplantibacillus in the combined inoculation group increased by 65.42% compared to the L-inoculated group (33.26%). Fungal community data revealed abundant Penicillium carneum in the control and L-inoculated groups stored at 15°C. Conclusively, these results showed that combined inoculation of L. plantarum L75 and S. cerevisiae improved the fermentation quality of oat silage at 15°C, thus proposing a technique for enhancing the fermentation quality of silage in regions with low temperatures during harvest season.


Subject(s)
Lactobacillus plantarum , Silage , Silage/microbiology , Saccharomyces cerevisiae , Lactobacillus , Avena , Fermentation , Temperature , Lactic Acid
20.
MedComm (2020) ; 5(4): e543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585233

ABSTRACT

High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...