Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239880

ABSTRACT

Simultaneously, multiplexed genome engineering and targeting multiple genomic loci are valuable to elucidating gene interactions and characterizing genetic networks that affect phenotypes. Here, we developed a general CRISPR-based platform to perform four functions and target multiple genome loci encoded in a single transcript. To establish multiple functions for multiple loci targets, we fused four RNA hairpins, MS2, PP7, com and boxB, to stem-loops of gRNA (guide RNA) scaffolds, separately. The RNA-hairpin-binding domains MCP, PCP, Com and λN22 were fused with different functional effectors. These paired combinations of cognate-RNA hairpins and RNA-binding proteins generated the simultaneous, independent regulation of multiple target genes. To ensure that all proteins and RNAs are expressed in one transcript, multiple gRNAs were constructed in a tandemly arrayed tRNA (transfer RNA)-gRNA architecture, and the triplex sequence was cloned between the protein-coding sequences and the tRNA-gRNA array. By leveraging this system, we illustrate the transcriptional activation, transcriptional repression, DNA methylation and DNA demethylation of endogenous targets using up to 16 individual CRISPR gRNAs delivered on a single transcript. This system provides a powerful platform to investigate synthetic biology questions and engineer complex-phenotype medical applications.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering , CRISPR-Cas Systems/genetics , Gene Expression , Transcriptional Activation , RNA, Transfer/genetics , Gene Editing
2.
J Vet Sci ; 23(6): e90, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36448436

ABSTRACT

BACKGROUND: Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin. OBJECTIVES: The goal of our research was to see how insulin affected glucose and lipid metabolism in PEFs. METHODS: We cultured the PEFs with the addition of insulin and sampled them at 0, 48, and 72 h for RNA-Seq analysis in triplicate for each time point. RESULTS: At 48 and 72 h, 801 and 1,176 genes were differentially expressed, respectively. Of these, 272 up-regulated genes and 264 down-regulated genes were common to both time points. Gene Ontology analysis was used to annotate the functions of the differentially expressed genes (DEGs), the biological processes related to lipid metabolism and cell cycle were dominant. And the DEGs were significantly enriched in interleukin-17 signaling pathway, phosphatidylinositol-3-kinase-protein kinase B signaling pathway, pyruvate metabolism, and others pathways related to lipid metabolism by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. CONCLUSIONS: These results elucidate the transcriptomic response to insulin in PEF. The genes and pathways involved in the transcriptome mechanisms provide useful information for further research into the complicated molecular processes of insulin in PEF.


Subject(s)
Fibroblasts , Insulins , Animals , Swine , RNA-Seq/veterinary , Lipid Metabolism , Glucose
3.
J Appl Clin Med Phys ; 21(12): 166-177, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33136307

ABSTRACT

PURPOSE: Cone beam computed tomography (CBCT) offers advantages such as high ray utilization rate, the same spatial resolution within and between slices, and high precision. It is one of the most actively studied topics in international computed tomography (CT) research. However, its application is hindered owing to scatter artifacts. This paper proposes a novel scatter artifact removal algorithm that is based on a convolutional neural network (CNN), where contextual loss is employed as the loss function. METHODS: In the proposed method, contextual loss is added to a simple CNN network to correct the CBCT artifacts in the pelvic region. The algorithm aims to learn the mapping from CBCT images to planning CT images. The 627 CBCT-CT pairs of 11 patients were used to train the network, and the proposed algorithm was evaluated in terms of the mean absolute error (MAE), average peak signal-to-noise ratio (PSNR) and so on. The proposed method was compared with other methods to illustrate its effectiveness. RESULTS: The proposed method can remove artifacts (including streaking, shadowing, and cupping) in the CBCT image. Furthermore, key details such as the internal contours and texture information of the pelvic region are well preserved. Analysis of the average CT number, average MAE, and average PSNR indicated that the proposed method improved the image quality. The test results obtained with the chest data also indicated that the proposed method could be applied to other anatomies. CONCLUSIONS: Although the CBCT-CT image pairs are not completely matched at the pixel level, the method proposed in this paper can effectively correct the artifacts in the CBCT slices and improve the image quality. The average CT number of the regions of interest (including bones, skin) also exhibited a significant improvement. Furthermore, the proposed method can be applied to enhance the performance on such applications as dose estimation and segmentation.


Subject(s)
Artifacts , Spiral Cone-Beam Computed Tomography , Algorithms , Cone-Beam Computed Tomography , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Scattering, Radiation
4.
PLoS One ; 9(12): e114198, 2014.
Article in English | MEDLINE | ID: mdl-25464512

ABSTRACT

Polycystin-1 (Pkd1) interacts with polycystin-2 (Pkd2) to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined. To this end, we conditionally inactivated Pkd2 in mature osteoblasts by crossing Osteocalcin (Oc)-Cre;Pkd2+/null mice with floxed Pkd2 (Pkd2flox/flox) mice. Oc-Cre;Pkd2flox/null (Pkd2Oc-cKO) mice exhibited decreased bone mineral density, trabecular bone volume, cortical thickness, mineral apposition rate and impaired biomechanical properties of bone. Pkd2 deficiency resulted in diminished Runt-related transcription factor 2 (Runx2) expressions in bone and impaired osteoblastic differentiation ex vivo. Expression of osteoblast-related genes, including, Osteocalcin, Osteopontin, Bone sialoprotein (Bsp), Phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex), Dentin matrix protein 1 (Dmp1), Sclerostin (Sost), and Fibroblast growth factor 23 (FGF23) were reduced proportionate to the reduction of Pkd2 gene dose in bone of Oc-Cre;Pkd2flox/+ and Oc-Cre;Pkd2flox/null mice. Loss of Pkd2 also resulted in diminished peroxisome proliferator-activated receptor γ (PPARγ) expression and reduced bone marrow fat in vivo and reduced adipogenesis in osteoblast culture ex vivo. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP), reciprocally acting as co-activators and co-repressors of Runx2 and PPARγ, were decreased in bone of Oc-Cre;Pkd2flox/null mice. Thus, Pkd1 and Pkd2 have coordinate effects on osteoblast differentiation and opposite effects on adipogenesis, suggesting that Pkd1 and Pkd2 signaling pathways can have independent effects on mesenchymal lineage commitment in bone.


Subject(s)
Adiposity , Bone Diseases, Metabolic/metabolism , Bone Marrow/pathology , Gene Deletion , Osteoblasts/metabolism , TRPP Cation Channels/genetics , Animals , Fibroblast Growth Factor-23 , Gene Expression Regulation , Mice , Signal Transduction , X-Ray Microtomography
5.
PLoS One ; 9(8): e104154, 2014.
Article in English | MEDLINE | ID: mdl-25089825

ABSTRACT

Increases in fibroblastic growth factor 23 (FGF23 or Fgf23) production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH). Fibroblastic growth factor (FGF) signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1) in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes. Crossing dentin matrix protein 1 (Dmp1)-Cre;Fgfr1null/+ mice with female Hyp;Fgfr1flox/flox mice created Hyp and Fgfr1 (Fgfr1Dmp1-cKO)-null mice (Hyp;Fgfr1Dmp1-cKO) with a 70% decrease in bone Fgfr1 transcripts. Fgfr1Dmp1-cKO-null mice exhibited a 50% reduction in FGF23 expression in bone and 3-fold reduction in serum FGF23 concentrations, as well as reductions in sclerostin (Sost), phosphate regulating endopeptidase on X chromosome (PHEX or Phex), matrix extracellular phosphoglycoprotein (Mepe), and Dmp1 transcripts, but had no demonstrable alterations in phosphate or vitamin D homeostasis or skeletal morphology. Hyp mice had hypophosphatemia, reductions in 1,25(OH)2D levels, rickets/osteomalacia and elevated FGF2 expression in bone. Compared to Hyp mice, compound Hyp;Fgfr1Dmp1-cKO-null mice had significant improvement in rickets and osteomalacia in association with a decrease in serum FGF23 (3607 to 1099 pg/ml), an increase in serum phosphate (6.0 mg/dl to 9.3 mg/dl) and 1,25(OH)2D (121±23 to 192±34 pg/ml) levels, but only a 30% reduction in bone FGF23 mRNA expression. FGF23 promoter activity in osteoblasts was stimulated by FGFR1 activation and inhibited by overexpression of a dominant negative FGFR1(TK-), PLCγ and MAPK inhibitors. FGF2 also stimulated the translation of an FGF23 cDNA transfected into osteoblasts via a FGFR1 and PI3K/Akt-dependent mechanism. Thus, activation of autocrine/paracrine FGF pathways is involved in the pathogenesis of Hyp through FGFR1-dependent regulation of FGF23 by both transcriptional and post-transcriptional mechanisms. This may serve to link local bone metabolism with systemic phosphate and vitamin D homeostasis.


Subject(s)
Fibroblast Growth Factors/biosynthesis , Hypophosphatemia/genetics , Osteocytes/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Animals , Autocrine Communication/genetics , Extracellular Matrix Proteins/genetics , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Hypophosphatemia/metabolism , Hypophosphatemia/pathology , Mice , Mice, Knockout , Osteocytes/pathology , RNA, Messenger/biosynthesis , Transcriptional Activation/genetics , Vitamin D/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...