Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38001626

ABSTRACT

Bisphosphonates are widely used to treat osteoporosis and malignant tumors due to their effectiveness in increasing bone density and inhibiting bone resorption. However, their association with bisphosphonate-related osteonecrosis of the jaws (BRONJ) following invasive dental procedures poses a significant challenge. This review explores the functions, mechanisms, and side effects of bisphosphonates, emphasizing their impact on dental procedures. Dental patients receiving bisphosphonate treatment are at higher risk of BRONJ, necessitating dentists' awareness of these risks. Topical bisphosphonate applications enhance dental implant success, by promoting osseointegration and preventing osteoclast apoptosis, and is effective in periodontal treatment. Yet, systemic administration (intravenous or intraoral) significantly increases the risk of BRONJ following dental procedures, particularly in inflamed conditions. Prevention and management of BRONJ involve maintaining oral health, considering alternative treatments, and careful pre-operative and post-operative follow-ups. Future research could focus on finding bisphosphonate alternatives with fewer side effects or developing combinations that reduce BRONJ risk. This review underscores the need for further exploration of bisphosphonates and their implications in dental procedures.

2.
Biomed Res Int ; 2022: 9774879, 2022.
Article in English | MEDLINE | ID: mdl-35832846

ABSTRACT

Gliomas are the most common primary intracranial tumors and closely related to circadian clock. Due to the high mortality and morbidity of gliomas, exploring novel diagnostic and early prognostic markers is necessary. Circadian clock genes (CCGs) play important roles in regulating the daily oscillation of biological processes and the development of tumor. Therefore, we explored the influences that the oscillations of circadian clock genes (CCGs) on diagnosis and prognosis of gliomas using bioinformatics. In this work, we systematically analyzed the rhythmic expression of CCGs in brain and found that some CCGs had strong rhythmic expression; the expression levels were significantly different between day and night. Four CCGs (ARNTL, NPAS2, CRY2, and DBP) with rhythmic expression were not only identified as differentially expressed genes but also had significant independent prognostic ability in the overall survival of glioma patients and were highly correlated with glioma prognosis in COX analysis. Besides, we found that CCG-based predictive model demonstrated higher predictive accuracy than that of the traditional grade-based model; this new prediction model can greatly improve the accuracy of glioma prognosis. Importantly, based on the four CCGs' circadian oscillations, we revealed that patients sampled at night had higher predictive ability. This may help detect glioma as early as possible, leading to early cancer intervention. In addition, we explored the mechanism of CCGs affecting the prognosis of glioma. CCGs regulated the cell cycle, DNA damage, Wnt, mTOR, and MAPK signaling pathways. In addition, it also affects prognosis through gene coexpression and immune infiltration. Importantly, ARNTL can rhythmically modulated the cellular sensitivity to clinic drugs, temozolomide. The optimal point of temozolomide administration should be when ARNTL expression is highest, that is, the effect is better at night. In summary, our study provided a basis for optimizing clinical dosing regimens and chronotherapy for glioma. The four key CCGs can serve as potential diagnostic and prognostic biomarkers for glioma patients, and ARNTL also has obvious advantages in the direction of glioma chronotherapy.


Subject(s)
Circadian Clocks , Glioma , ARNTL Transcription Factors , Biomarkers , Chronotherapy , Circadian Clocks/genetics , Circadian Rhythm/genetics , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Humans , Prognosis , Temozolomide
3.
Front Mol Biosci ; 9: 875418, 2022.
Article in English | MEDLINE | ID: mdl-35755819

ABSTRACT

There are still frequent reports that a number of recovered coronavirus disease 2019 (COVID-19) patients following discharge have re-detectable positive (RP) results by RT-PCR. Understanding the clinical and molecular characteristics of RP patients may have implications for curbing the COVID-19 pandemic. In this study, 318 COVID-19 convalescent patients, including 59 RP patients and 259 non-RP (NRP) patients, were enrolled. Among RP patients, women accounted for a significantly high proportion (67.8%), and the titers of IgG and IgM antibodies in this group were also significantly high. Differentially expressed genes (DEGs), including 692 upregulated and 383 downregulated genes, overlapped in two public GEO datasets containing RP and NRP blood cell samples. Enrichment analysis indicated that these DEGs were related to several key signaling pathways, such as viral infection, immune activation, and inflammatory responses. Importantly, 59 indicator genes constituting the core network exhibited high diagnostic values and were correlated with markers of different immune cells. Among these, 12 drug-related genes were associated with the RP results. Our work suggests that, in addition to clinically available features, blood cell transcriptome sequencing can be performed to obtain gene signatures for diagnosis of RP patients.

4.
Comput Math Methods Med ; 2021: 8238833, 2021.
Article in English | MEDLINE | ID: mdl-34745328

ABSTRACT

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide due to its asymptomatic onset and poor survival rate. This highlights the urgent need for developing novel diagnostic markers for early HCC detection. The circadian clock is important for maintaining cellular homeostasis and is tightly associated with key tumorigenesis-associated molecular events, suggesting the so-called chronotherapy. An analysis of these core circadian genes may lead to the discovery of biological markers signaling the onset of the disease. In this study, the possible functions of 13 core circadian clock genes (CCGs) in HCC were systematically analyzed with the aim of identifying ideal biomarkers and therapeutic targets. Profiles of HCC patients with clinical and gene expression data were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. Various bioinformatics methods were used to investigate the roles of circadian clock genes in HCC tumorigenesis. We found that patients with high TIMELESS expression or low CRY2, PER1, and RORA expressions have poor survival. Besides, a prediction model consisting of these four CCGs, the tumor-node-metastasis (TNM) stage, and sex was constructed, demonstrating higher predictive accuracy than the traditional TNM-based model. In addition, pathway analysis showed that these four CCGs are involved in the cell cycle, PI3K/AKT pathway, and fatty acid metabolism. Furthermore, the network of these four CCGs-related coexpressed genes and immune infiltration was analyzed, which revealed the close association with B cells and nTreg cells. Notably, TIMELESS exhibited contrasting effects against CRY2, PER1, and RORA in most situations. In sum, our works revealed that these circadian clock genes TIMELESS, CRY2, PER1, and RORA can serve as potential diagnostic and prognostic biomarkers, as well as therapeutic targets, for HCC patients, which may promote HCC chronotherapy by rhythmically regulating drug sensitivity and key cellular signaling pathways.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Circadian Clocks/genetics , Gene Regulatory Networks , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Cell Cycle Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Computational Biology , Cryptochromes/genetics , Female , Gene Expression Profiling/statistics & numerical data , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Period Circadian Proteins/genetics , Prognosis
5.
Pharmacol Res ; 168: 105580, 2021 06.
Article in English | MEDLINE | ID: mdl-33781874

ABSTRACT

Ferroptosis is an iron- and lipotoxicity-dependent regulated cell death that has been implicated in various diseases, such as cancer, neurodegeneration and stroke. The biosynthesis of phospholipids, coenzyme Q10, and glutathione, and the metabolism of iron, amino acids and polyunsaturated fatty acid, are tightly associated with cellular sensitivity to ferroptosis. Up to now, only limited drugs targeting ferroptosis have been documented and exploring novel effective ferroptosis-modulating compound is needed. Natural bioactive products are conventional resources for drug discovery, and some of them have been clinically used against cancers and neurodegenerative diseases as dietary supplements or pharmaceutic agents. Notably, increasing evidence demonstrates that natural compounds, such as saponins, flavonoids and isothiocyanates, can either induce or inhibit ferroptosis, further expanding their therapeutic potentials. In this review, we highlight current advances of the emerging molecular mechanisms and disease relevance of ferroptosis. We also systematically summarize the regulatory effects of natural phytochemicals on ferroptosis, and clearly indicate that saponins, terpenoids and alkaloids induce ROS- and ferritinophagy-dependent ferroptosis, whereas flavonoids and polyphenols modulate iron metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling to inhibit ferroptosis. Finally, we explore their clinical applications in ferroptosis-related diseases, which may facilitate the development of their dietary usages as nutraceuticals.


Subject(s)
Ferroptosis/drug effects , Phytochemicals/pharmacology , Dietary Supplements , Humans , Iron/metabolism , Mevalonic Acid/metabolism , Neoplasms/drug therapy , Oxidative Stress/drug effects , Phospholipids/metabolism , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...