Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38981912

ABSTRACT

Biomarkers screening is a benefit approach for early diagnosis of major diseases. In this study, magnetic nanoparticles (MNPs) have been utilized as labels to establish a multi-line immunochromatography (MNP-MLIC) for simultaneous detection of carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA 19-9), and alpha-fetoprotein (AFP) in a single serum sample. Under the optimal parameters, the three biomarkers can be rapidly and simultaneously qualitative screening within 15 min by naked eye. As for quantitative detection, the MNP-MLIC test strips were precisely positioned and captured by a smartphone, and signals on the test and control lines were extracted by ImageJ software. The signal ratio of test and control lines has been calculated and used to plot quantitative standard curves with the logarithmic concentration, of which the correlation coefficients are more than 0.99, and the limit of detection for CEA, CA 19-9, and AFP were 0.60 ng/mL, 1.21 U/mL, and 0.93 ng/mL, respectively. The recoveries of blank serum were 75.0 ~ 112.5% with the relative standard deviation ranging from 2.5 to 15.3%, and the specificity investigation demonstrated that the MNP-MLIC is highly specific to the three biomarkers. In conclusion, the developed MNP-MLIC offers a rapid, simple, accurate, and highly specific method for simultaneously detecting multiple biomarkers in serum samples, which provides an efficient and accurate approach for the early diagnosis of diseases.

2.
Mikrochim Acta ; 190(10): 417, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37768390

ABSTRACT

A highly purified and bioactive immunoglobulin G monoclonal antibody against receptor-binding domain of SARS-CoV-2 (RBD-IgG-MAb) has been accurately quantified by amino acid determination using isotope dilution liquid chromatography-mass spectrometry. Absolute quantification of RBD-IgG-MAb was achieved by averaging 4 amino acid certified reference materials, which allows the quantitative value (66.1 ± 5.8 µg/L) to be traced to SI unit (mol). Afterwards, the RBD-IgG-MAb was employed as control and calibration compound for the development of a point-of-care testing (POCT) system based on colloidal gold lateral flow immunoassay, which aimed to rapidly and accurately detect the level of protective RBD-IgG after vaccination. Under the detection parameters, a sigmoidal curve has been plotted between signal intensity and the logarithmic concentration for quantitative detection with the limit of detection of about 0.39 µg/mL. The relative standard deviations of intra-assay and inter-assay were lower than 2.3% and 14%, and the recoveries ranged from 87 to 100%, respectively. Fingertip blood samples from 37 volunteers after vaccination were analyzed by the POCT system; results showed that levels of RBD-IgG in 33 out of 37 samples ranged from 0.45 to 2.46 µg/mL with the average level of 0.91 µg/mL. The developed POCT system has been successfully established with the quantity-traceability RBD-IgG-MAb as control and calibration compound, and the scientific contribution of this work can be promoted to other areas.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , SARS-CoV-2 , COVID-19/diagnosis , Point-of-Care Testing , Amino Acids
3.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628743

ABSTRACT

Immunochromatographic assay (ICA) plays an important role in in vitro diagnostics because of its simpleness, convenience, fastness, sensitivity, accuracy, and low cost. The employment of magnetic nanoparticles (MNPs), possessing both excellent optical properties and magnetic separation functions, can effectively promote the performances of ICA. In this study, an ICA based on MNPs (MNP-ICA) has been successfully developed for the sensitive detection of carcinoembryonic antigen (CEA). The magnetic probes were prepared by covalently conjugating carboxylated MNPs with the specific monoclonal antibody against CEA, which were not only employed to enrich and extract CEA from serum samples under an external magnetic field but also used as a signal output with its inherent optical property. Under the optimal parameters, the limit of detection (LOD) for qualitative detection with naked eyes was 1.0 ng/mL, and the quantitative detection could be realized with the help of a portable optical reader, indicating that the ratio of optical signal intensity correlated well with CEA concentration ranging from 1.0 ng/mL to 64.0 ng/mL (R2 = 0.9997). Additionally, method comparison demonstrated that the magnetic probes were beneficial for sensitivity improvement due to the matrix effect reduction after magnetic separation, and the MNP-ICA is eight times higher sensitive than ICA based on colloidal gold nanoparticles. The developed MNP-ICA will provide sensitive, convenient, and efficient technical support for biomarkers rapid screening in cancer diagnosis and prognosis.


Subject(s)
Carcinoembryonic Antigen , Magnetite Nanoparticles , Gold , Antibodies, Monoclonal , Immunoassay
4.
Talanta ; 258: 124462, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36963149

ABSTRACT

More than forty antigen testing kits have been approved to response the prevalence of SARS-CoV-2 and its variant strains. However, the approved antigen testing kits are not capable of quantitative detection. Here, we successfully developed a lateral flow immunoassay based on colloidal gold nanoparticles (CGNP-based LFIA) for nucleocapsid (N) protein of SARS-CoV-2 quantitative detection. Delta strain (NMDC60042793) of SARS-CoV-2 have been cultured and analyzed by our developed digital PCR and LFIA methods to explore the relationship between N protein amount and N gene level. It indicated that the linear relationship (y = 47 ×) between N protein molecule number and N gene copy number exhibited very well (R2 = 0.995), the virus titers and N protein amount can be roughly estimated according to nucleic acid testing. Additionally, detection limits (LODs) of nine approved antigen testing kits also have been evaluated according to the Guidelines for the registration review of 2019-nCoV antigen testing reagents. Only three antigen testing kits had LODs as stated in the instructions, the LODs of Kits have been converted into the N gene and N protein levels, according to the established relationships among virus titer vers. N gene and antigen. Results demonstrated that the sensitivity of nucleic acid testing is at least 1835 times higher than that of antigen testing. We expect that the relationship investigation and testing kits evaluation have the important directive significance to precise epidemic prevention.


Subject(s)
COVID-19 , Metal Nanoparticles , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Gold , Nucleocapsid Proteins/genetics , Sensitivity and Specificity
5.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077387

ABSTRACT

Carbohydrate antigen 199 (CA199) is a serum biomarker which has certain value and significance in the diagnosis, prognosis, treatment, and postoperative monitoring of cancer. In this study, a lateral flow immunoassay based on europium (III) polystyrene time-resolved fluorescence microspheres (TRFM-based LFIA), integrated with a portable fluorescence reader, has been successfully establish for rapid and quantitative analysis of CA199 in human serum. Briefly, time-resolved fluorescence microspheres (TRFMs) were conjugated with antibody I (Ab1) against CA199 as detection probes, and antibody II (Ab2) was coated as capture element, and a "TRFMs-Ab1-CA199-Ab2" sandwich format would form when CA199 was detected by the TRFM-based LFIA. Under the optimal parameters, the detection limit of the TRFM-based LFIA for visible quantitation with the help of an ultraviolet light was 4.125 U/mL, which was four times lower than that of LFIA based on gold nanoparticles. Additionally, the fluorescence ratio is well linearly correlated with the CA199 concentration (0.00-66.0 U/mL) and logarithmic concentration (66.0-264.0 U/mL) for quantitative detection. Serum samples from 10 healthy people and 10 liver cancer patients were tested to confirm the performances of the point-of-care application of the TRFM-based LFIA, 20.0 U/mL of CA199 in human serum was defined as the threshold for distinguishing healthy people from liver cancer patients with an accuracy of about 60%. The establishment of TRFM-based LFIA will provide a sensitive, convenient, and efficient technical support for rapid screening of CA199 in cancer diagnosis and prognosis.


Subject(s)
Liver Neoplasms , Metal Nanoparticles , Biomarkers, Tumor , Gold , Humans , Immunoassay , Limit of Detection , Microspheres
6.
Biosensors (Basel) ; 12(2)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35200362

ABSTRACT

Neutralizing antibody (NAb) is a family of antibodies with special functions, which afford a degree of protection against infection and/or reduce the risk of clinically severe infection. Receptor binding domain (RBD) in the spike protein of SARS-CoV-2, a portion of the S1 subunit, can stimulate the immune system to produce NAb after infection and vaccination. The detection of NAb against SARS-CoV-2 is a simple and direct approach for evaluating a vaccine's effectiveness. In this study, a direct, rapid, and point-of-care bicolor lateral flow immunoassay (LFIA) was developed for NAb against SARS-CoV-2 detection without sample pretreatment, and which was based on the principle of NAb-mediated blockage of the interaction between RBD and angiotensin-converting enzyme 2. In the bicolor LFIA, red and blue latex microspheres (LMs) were used to locate the test and control lines, leading to avoidance of erroneous interpretations of one-colored line results. Under the optimal conditions, NAb against SARS-CoV-2 detection carried out using the bicolor LFIA could be completed within 9 min, and the visible limit of detection was about 48 ng/mL. Thirteen serum samples were analyzed, and the results showed that the NAb levels in three positive serum samples were equal to, or higher than, 736 ng/mL. The LM-based bicolor LFIA allows one-step, rapid, convenient, inexpensive, and user-friendly determination of NAb against SARS-CoV-2 in serum.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/diagnosis , Chromatography, Affinity , Humans , Latex , Microspheres , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
7.
Biosensors (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35049641

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) is still raging all over the world. Hence, the rapid and sensitive screening of the suspected population is in high demand. The nucleocapsid protein (NP) of SARS-CoV-2 has been selected as an ideal marker for viral antigen detection. This study describes a lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles for rapid NP antigen detection, in which sensitivity was improved through copper deposition-induced signal amplification. The detection sensitivity of the developed LFIA for NP antigen detection (using certified reference materials) under the optimized parameters was 0.01 µg/mL and was promoted by three orders of magnitude to 10 pg/mL after copper deposition signal amplification. The LFIA coupled with the copper enhancement technique has many merits such as low cost, high efficiency, and high sensitivity. It provides an effective approach to the rapid screening, diagnosis, and monitoring of the suspected population in the COVID-19 outbreak.


Subject(s)
COVID-19 , Copper , Coronavirus Nucleocapsid Proteins/isolation & purification , Immunoassay , Metal Nanoparticles , Antibodies, Viral , Gold , Humans , Phosphoproteins , SARS-CoV-2 , Sensitivity and Specificity
8.
Magn Reson Imaging ; 26(3): 401-12, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18082991

ABSTRACT

The method Hankel Total Least Squares (HTLS)-PK, which successfully incorporates prior knowledge of known signal poles into the method HTLS, has been proven to greatly improve the performance for parameter estimation of overlapping peaks of magnetic resonance spectroscopy (MRS) signal. In addition, decimation is also proposed as a way to increase the performance of subspace-based parameter estimation methods in the case of oversampling. Taking advantage of decimation in combination with prior knowledge to estimate the MRS signal parameters, two novel subspace-based parameter estimation methods, HTLSDSumPK and HTLSDStackPK, are presented in this paper. The experimental results and relevant analysis show that the methods HTLSDSumPK, HTLSDStackPK and HTLS-PK are slightly better than the method HTLS at low noise levels; however, the three prior-knowledge-incorporating methods, especially the method HTLSDSumPK, have much better performance than the method HTLS at high noise levels in the terms of robustness, estimated accuracy and computational complexity. Even if some inaccuracy of prior knowledge is considered, the method HTLSDSumPK also shows some advantages.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Animals , Brain Chemistry , Computer Simulation , Humans , Least-Squares Analysis , Liver/blood supply , Rats , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...