Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(4): 4559-4566, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32271535

ABSTRACT

Performance of 2D photodetectors is often predominated by charge traps that offer an effective photogating effect. The device features an ultrahigh gain and responsivity, but at the cost of a retarded temporal response due to the nature of long-lived trap states. In this work, we devise a gain mechanism that originates from massive charge puddles formed in the type-II 2D lateral heterostructures. This concept is demonstrated using graphene-contacted WS2 photodetectors embedded with WSe2 nanodots. Upon light illumination, photoexcited carriers are separated by the built-in field at the WSe2/WS2 heterojunctions (HJs), with holes trapped in the WSe2 nanodots. The resulting WSe2 hole puddles provide a photoconductive gain, as electrons are recirculating during the lifetime of holes that remain trapped in the puddles. The WSe2/WS2 HJ photodetectors exhibit a responsivity of 3 × 102 A/W with a gain of 7 × 102 electrons per photon. Meanwhile, the zero-gate response time is reduced by 5 orders of magnitude as compared to the prior reports for the graphene-contacted pristine WS2 monolayer and WS2/MoS2 heterobilayer photodetectors due to the ultrafast intralayer excitonic dynamics in the WSe2/WS2 HJs.

2.
ACS Nano ; 14(1): 985-992, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31904930

ABSTRACT

The most pressing barrier for the development of advanced electronics based on two-dimensional (2D) layered semiconductors stems from the lack of site-selective synthesis of complementary n- and p-channels with low contact resistance. Here, we report an in-plane epitaxial route for the growth of interlaced 2D semiconductor monolayers using chemical vapor deposition with a gas-confined scheme, in which patterned graphene (Gr) serves as a guiding template for site-selective growth of Gr-WS2-Gr and Gr-WSe2-Gr heterostructures. The Gr/2D semiconductor interface exhibits a transparent contact with a nearly ideal pinning factor of 0.95 for the n-channel WS2 and 0.92 for the p-channel WSe2. The effective depinning of the Fermi level gives an ultralow contact resistance of 0.75 and 1.20 kΩ·µm for WS2 and WSe2, respectively. Integrated logic circuits including inverter, NAND gate, static random access memory, and five-stage ring oscillator are constructed using the complementary Gr-WS2-Gr-WSe2-Gr heterojunctions as a fundamental building block, featuring the prominent performance metrics of high operation frequency (>0.2 GHz), low-power consumption, large noise margins, and high operational stability. The technology presented here provides a speculative look at the electronic circuitry built on atomic-scale semiconductors in the near future.

3.
ACS Appl Mater Interfaces ; 11(39): 35969-35976, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31532619

ABSTRACT

InSe is a high-mobility layered semiconductor with mobility being highly sensitive to any surrounding media that could act as a source of extrinsic scattering. However, little effort has been made to understand electronic transport in thin InSe layers with native surface oxide formed spontaneously upon exposure to an ambient environment. Here, we explore the influence of InOx/InSe interfacial trap states on electronic transport in thin InSe layers. We show that wet oxidation (processed in an ambient environment) causes massive deep-lying band-tail states, through which electrons conduct via 2D variable-range hopping with a short localization length of 1-3 nm. In contrast, a high-quality InOx/InSe interface can be formed in dry oxidation (processed in pure oxygen), with a low trap density of 1012 eV-1 cm-2. Metal-insulator transition can be thus observed in the gate sweep of the field-effect transistors (FETs), indicative of band transport predominated by extended states above the mobility edge. A room-temperature band mobility of 103 cm2/V s is obtained. The profound difference in the transport behavior between the wet and dry InSe FETs suggests that fluctuating Coulomb potential arising from trapped charges at the InOx/InSe interface is the dominant source of disorders in thin InSe channels.

4.
ACS Nano ; 13(7): 8146-8154, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31244047

ABSTRACT

Contact engineering has been the central issue in the context of high-performance field-effect transistors (FETs) made of atomic thin transition metal dichalcogenides (TMDs). Conventional metal contacts on TMDs have been made on top via a lithography process, forming a top-bonded contact scheme with an appreciable contact barrier. To provide a more efficient pathway for charge injection, an end-bonded contact scheme has been proposed, in which covalent bonds are formed between the contact metal and channel edges. Yet, little efforts have been made to realize this contact configuration. Here, we bridge this gap and demonstrate seeded growth of end-bonded contact with different TMDs by means of chemical vapor deposition (CVD). Monolayer WSe2 FETs with a CVD-grown channel and end contacts exhibit improved performance metrics, including an on-current density of 30 µA/µm, a hole mobility of 90 cm2/V·s, and a subthreshold swing of 94 mV/dec, an order of magnitude superior than those of top-contact FET counterparts that share the same channel material. A fundamental NOT logic gate constructed using top-gated and end-bonded WSe2 and MoS2 FETs is also demonstrated. Calculations using density functional theory indicate that the superior device performance stems mainly from the stronger metal-TMD hybridization and substantial gap states in the end-contact configuration.

5.
ACS Nano ; 13(3): 3269-3279, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30790512

ABSTRACT

One of the primary limitations of previously reported two-dimensional (2D) photodetectors is a low frequency response (≪ 1 Hz) for sensitive devices with gain. Yet, little efforts have been devoted to improve the temporal response of photodetectors while maintaining high gain and responsivity. Here, we demonstrate a gain of 6.3 × 103 electrons per photon and a responsivity of 2.6 × 103 A/W while simultaneously exhibiting an ultrafast response time of 40-65 µs in a hybrid photodetector that consists of graphene-WS2-graphene junctions covered with indium (In) adatoms atop. The resultant responsivity is 6 orders of magnitude higher than that of conventional photodetectors comprising solely of a Au-WS2-Au junction. The photogain is provided mainly by the adsorbed In adatoms, from which photogenerated electrons can be transferred to the WS2 channel, while holes remain trapped in In adatoms, leading to a photogating effect as electrons are recirculating during the residence of holes in In adatoms. At a gate voltage near the Dirac point of graphene, a detectivity of D* = 2.2 × 1012 Jones and an ON/OFF ratio of 104 are achieved. The enhanced performance of the device can be attributed partly to the transparent graphene/WS2 contact and partly to the strong capacitive coupling of the In adatoms with the WS2 channel, which enables ultrafast carrier dynamics.

6.
ACS Appl Mater Interfaces ; 9(41): 36181-36188, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28945069

ABSTRACT

Atomically thin two-dimensional (2D) materials have attracted increasing attention for optoelectronic applications in view of their compact, ultrathin, flexible, and superior photosensing characteristics. Yet, scalable growth of 2D heterostructures and the fabrication of integrable optoelectronic devices remain unaddressed. Here, we show a scalable formation of 2D stacks and the fabrication of phototransistor arrays, with each photosensing element made of a graphene-WS2 vertical heterojunction and individually addressable by a local top gate. The constituent layers in the heterojunction are grown using chemical vapor deposition in combination with sulfurization, providing a clean junction interface and processing scalability. The aluminum top gate possesses a self-limiting oxide around the gate structure, allowing for a self-aligned deposition of drain/source contacts to reduce the access (ungated) channel regions and to boost the device performance. The generated photocurrent, inherently restricted by the limited optical absorption cross section of 2D materials, can be enhanced by 2 orders of magnitude by top gating. The resulting photoresponsivity can reach 4.0 A/W under an illumination power density of 0.5 mW/cm2, and the dark current can be minimized to few picoamperes, yielding a low noise-equivalent power of 2.5 × 10-16 W/Hz1/2. Tailoring 2D heterostacks as well as the device architecture moves the applications of 2D-based optoelectronic devices one big step forward.

7.
ACS Nano ; 9(11): 11249-57, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26390381

ABSTRACT

Rhenium disulfide (ReS2) and diselenide (ReSe2), the group 7 transition metal dichalcogenides (TMDs), are known to have a layered atomic structure showing an in-plane motif of diamond-shaped-chains (DS-chains) arranged in parallel. Using a combination of transmission electron microscopy and transport measurements, we demonstrate here the direct correlation of electron transport anisotropy in single-layered ReS2 with the atomic orientation of the DS-chains, as also supported by our density functional theory calculations. We further show that the direction of conducting channels in ReS2 and ReSe2 can be controlled by electron beam irradiation at elevated temperatures and follows the strain induced to the sample. Furthermore, high chalcogen deficiency can induce a structural transformation to a nonstoichiometric phase, which is again strongly direction-dependent. This tunable in-plane transport behavior opens up great avenues for creating nanoelectronic circuits in 2D materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...