Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Proteome Res ; 23(2): 718-727, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38164767

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by the deficiency of the enzyme α-l-iduronidase (IDUA), typically leading to devastating secondary pathophysiological cascades. Due to the irreversible nature of the disease's progression, early diagnosis and interventional treatment has become particularly crucial. Considering the fact that serum and urine are the most commonly used specimens in clinical practice for detection, we conducted an analysis to identify the differential protein profile in the serum and urine of MPS I patients using the tandem mass tag (TMT) technique. A total of 182 differentially expressed proteins (DEPs) were detected in serum, among which 9 showed significant differences as confirmed by parallel reaction monitoring (PRM) analysis. The proteins APOA1 and LGFBP3 were downregulated in serum, while the expression levels of ALDOB, CD163, CRTAC1, DPP4, LAMP2, SHBG, and SPP2 exhibited an increase. In further exploratory studies of urinary proteomics, 32 identified DEPs were consistent with the discovered findings in serum tests, specifically displaying a high diagnostic area under the curve (AUC) value. Thus, our study demonstrates the value of serum-urine integrated proteomic analysis in evaluating the clinical course of MPS I and other potential metabolic disorders, shedding light on the importance of early detection and intervention in these conditions.


Subject(s)
Mucopolysaccharidosis I , Humans , Mucopolysaccharidosis I/diagnosis , Mucopolysaccharidosis I/genetics , Proteomics , Proteins/metabolism , Calcium-Binding Proteins
2.
Sci Total Environ ; 896: 166146, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37595914

ABSTRACT

Plant Volatile components are an ecological adaptation mechanism of plants that can reflect species differences and environment information where it is located. The alpine shrub Rosa sericea complex consists of several allied species, which are morphologically similar and difficult to distinguish, they are typical distribution along the elevation in the Himalayas and the Transverse Ranges. We selected two typical areas to find that the different species could be distinguished by their "green leaf volatile components" (GLV) composition as well as their geographical location, and it was evident that species with glands had higher sesquiterpene content. Correlation analysis revealed the relation between volatile components and ecology factors (climate factors, soil factors, phyllospheric microorganisms). Our study adds a new perspective and basis for the environmental adaptations of different species in the alpine shrub Rosa sericea complex from a chemical ecology perspective.


Subject(s)
Rosa , Species Specificity , Plant Leaves , Soil
3.
Cladistics ; 39(4): 273-292, 2023 08.
Article in English | MEDLINE | ID: mdl-37084123

ABSTRACT

The pantropical fern genus Didymochlaena (Didymochlaenaceae) has long been considered to contain one species only. Recent studies have resolved this genus/family as either sister to the rest of eupolypods I or as the second branching lineage of eupolypods I, and have shown that this genus is not monospecific, but the exact species diversity is unknown. In this study, a new phylogeny is reconstructed based on an expanded taxon sampling and six molecular markers. Our major results include: (i) Didymochlaena is moderately or weakly supported as sister to the rest of eupolypods I, highlighting the difficulty in resolving the relationships of this important fern lineage in the polypods; (ii) species in Didymochlaena are resolved into a New World clade and an Old World clade, and the latter further into an African clade and an Asian-Pacific clade; (iii) an unusual tripling of molecular, morphological and geographical differentiation in Didymochlaena is detected, suggesting single vicariance or dispersal events in individual regions and no evidence for reversals at all, followed by allopatric speciation at more or less homogeneous rates; (iv) evolution of 18 morphological characters is inferred and two morphological synapomorphies defining the family are recognized-the elliptical sori and fewer than 10 sori per pinnule, the latter never having been suggested before; (v) based on morphological and molecular variation, 22 species in the genus are recognized contrasting with earlier estimates of between one and a few; and (vi) our biogeographical analysis suggests an origin for Didymochlaena in the latest Jurassic-earliest Cretaceous and the initial diversification of the extant lineages in the Miocene-all but one species diverged from their sisters within the last 27 Myr, in most cases associated with allopatric speciation owing to geologic and climatic events, or dispersal.


Subject(s)
Ferns , Magnoliopsida , Ferns/genetics , Evolution, Molecular , Phylogeny , Geography
4.
Mol Phylogenet Evol ; 178: 107633, 2023 01.
Article in English | MEDLINE | ID: mdl-36182051

ABSTRACT

Bolbitis is a pantropical fern genus of Dryopteridaceae with ca. 80 species mainly in tropical Asia. Earlier studies confirmed the monophyly of Bolbitis when Mickelia is excluded and identified three major clades in Bolbitis. However, earlier studies are based on relatively small sampling and the majority of Asian species are not sampled. In this study, DNA sequences of three plastid markers of 169 accessions representing ca. 68 (85 % of total) species of Bolbitis in nine out of the 10 series recognized by Hennipman (1977), and 54 accessions representing the five remaining bolbitidoid genera are used to infer a global phylogeny with a focus on Asian species. The major results include: (1) Bolbitis is strongly supported as monophyletic; (2) species of Bolbitis are resolved into four major clades and their relationships are: the Malagasy/Mascarene clade is sister to the rest, followed by the African clade which is sister to the American clade + the Asian clade; (3) six well-supported subclades are identified in the most speciose Asian clade; (4) the free-veined Egenolfia is embedded in Bolbitis and is paraphyletic in relation to species with anastomosing venation; (5) three series sensu Hennipman (1977), B. ser. Alienae, B. ser. Egenolfianae, and B. ser. Heteroclitae, are paraphyletic or polyphyletic; (6) evolution of six morphological characters is analyzed and free venation is found to have evolved from anastomosing venation and reversed to free venation in Bolbitis; and (7) biogeographical implications are drawn and it is shown that a single recent dispersal from Asia resulted in continental disjunction of closely related ferns of Bolbitis between Africa and America.


Subject(s)
Dryopteridaceae , Ferns , Phylogeny , Plastids/genetics , Base Sequence
5.
Ann Bot ; 131(1): 59-70, 2023 02 07.
Article in English | MEDLINE | ID: mdl-34259813

ABSTRACT

BACKGROUND AND AIMS: The dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number. METHODS: We conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation. KEY RESULTS: The measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution. CONCLUSIONS: Our results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.


Subject(s)
Ferns , Phylogeny , Ferns/genetics , Genome Size , Genomics , DNA
6.
J Cancer ; 11(8): 2201-2212, 2020.
Article in English | MEDLINE | ID: mdl-32127947

ABSTRACT

Background: The lnc-SNHG16 serves as an oncogene and miR-128 acts as a tumor suppressor in various cancers. However, the functional role of lnc-SNHG16 and miR-128 in CC still remain unknown. This study aims to explore the expression level of lnc-SNHG16 and miR-128 and its biological roles in CC. Methods: lnc-SNHG16, miR-128, GSPT1 and WNT3A expression were analyzed using quantitative real-time PCR and bioinformatics in cervical cancer tissues and cells. Cell Counting Kit-8, EdU staining, colony formation assay, western blot, Transwell, immunofluorescence, immunohistochemical staining, luciferase reporter assay, electrophoretic mobility shift, tumor xenograft, and flow cytometry assays were employed to investigate the mechanisms underlying the effect of Lnc-SNHG16/miR-128 axis on cervical cancer. Results: lnc-SNHG16 was up-regulated in CC cell lines and tissues. lnc-SNHG16 knockdown inhibited proliferation, restrained the epithelial-mesenchymal transition (EMT) process by regulating cell apoptosis and cell cycle. The next study indicated that lnc-SNHG16 knockdown markedly increased miR-128 level which is down-regulated in CC. Moreover, miR-128 overexpression significantly inhibited proliferation, EMT process and tumor growth by directly targeting GSPT1 and WNT3A. Finally, lnc-SNHG16 activates but miR-128 inactivates the WNT/ß-catenin pathways in CC cells. Conclusion: Our data suggest that lnc-SNHG16/miR-128 axis modulates malignant phenotype of CC cells through WNT/ß-catenin pathway.

7.
Mol Phylogenet Evol ; 148: 106803, 2020 07.
Article in English | MEDLINE | ID: mdl-32217168

ABSTRACT

Lepisoroid ferns (tribe Lepisoreae, Polypodiaceae) are arguably one of the most confusing fern groups in Polypodiaceae in terms of delimitation of genera largely because of their simple morphology. Previous molecular studies either had very small taxon sampling of the non-Lepisorus genera and did not well resolve the relationships among these genera, or had a relatively large sampling at species level but the critical species were missing or their relationships were not well resolved. A recent study resolved the newly sampled Lepisorus jakonensis as sister to the remaining genera in Lepisoreae excluding Paragramma, and the authors lumped all the six well recognized genera into Lepisorus. In the present study, to infer a phylogeny we used DNA sequences of five plastid markers (matK, rbcL, rbcL-atpB, rps4 &rps4-trnS, trnL &trnL-F) of 172 accessions representing ca. 44 species of non-Lepisorus genera and 54 accessions representing ca. 50 species of Lepisorus as ingroup, and 10 non-Lepisoreae accessions from the most closely related four genera (Leptochilus, Microsorum, Phymatosorus, and Goniophlebium) in Microsoroideae and one genus (Pyrrosia) in Platycerioideae. Our major results include: (1) All seven currently defined genera except Lepisorus in Lepisoreae are confirmed to be monophyletic; (2) The Lepisorus jakonensis clade is confirmed to be the second earliest diverged lineage in Lepisoreae; (3) Neolepisorus is resolved as sister to the rest in a clade containing all non-Lepisorus genera except Paragramma; (4) Lemmaphyllum is sister to a clade containing Lepidomicrosorium, Neocheiropteris, and Tricholepidium; and (5) Ellipinema gen. nov. is segregated from Lepisorus based on the phylogeny and morphology in order to stabilize the current usage of the existing six non-Lepisorus genera and species names in these genera. A key to all eight genera of Lepisoreae is provided.


Subject(s)
Phylogeny , Polypodiaceae/classification , Likelihood Functions , Plastids/genetics
8.
PhytoKeys ; 130: 115-133, 2019.
Article in English | MEDLINE | ID: mdl-31534400

ABSTRACT

Our understanding of the flora of China has greatly improved during the last 100 years but effective management of the rich biodiversity and unique natural resources requires resolving the taxonomic limitations of existing treatments. Here, we focus on the epiphytic genus Scleroglossum with special emphasis on the occurrences in Hainan and Yunnan of mainland China. By combining fieldwork, herbarium studies, and DNA barcoding we test the hypothesis that this genus is represented by more than one species in China. Our integrative results show the Yunnan accessions are distinct from those in Hainan in both phenotypic and genotypic variation. The Yunnan accessions belong to S. pusillum, whereas the Hainan accessions represent a distinct species displaying the morphological characteristics of S. sulcatum. Genotypic evidence suggests the occurrence of cryptic diversity among accessions with the morphology of S. sulcatum. In summary, the study contributes to the crucial assessment of the plant diversity in Yunnan and illustrates the importance of integrating collection efforts and DNA barcoding approaches to enable effective assessment of the epiphytic diversity of Yunnan.

9.
Zhonghua Yi Xue Za Zhi ; 95(44): 3631-4, 2015 Nov 24.
Article in Chinese | MEDLINE | ID: mdl-26813380

ABSTRACT

OBJECTIVE: To develop a quick quantitative detecting method for luteinizing hormone(LH) based on superparamagnetic particles labeled immunochromatography technology. METHODS: Magnetic particles were catalyzed by EDC/NHS, LH monoclonal antibody were coupled with magnetic particles, another antibody were coated with the NC membrane, established a quantitative detecting method combined sand wish assay format with immunochromatography. The performance of this method was evaluated by linear range, precision, accuracy, specificity and stability. Detecting the serum sample that were tested by chemiluminescence immunoassay (CLIA) which was high credibility to verify the reliability. RESULTS: The reaction time of LH antibody coupled magnetic particles, LH and LH antibody coated in nitrocellulose membrane was 20 min; the coefficient of variation (CV) values for low, median, high were 8%-12%, the bias was less than 10%, recovery rate was 90%-120%, the minimum detection limit was 0.63 mIU/ml, no obvious cross reaction with human chorionic gonadotropin (HCG), thyroid stimulating hormone (TSH), follicle-stimulating hormone (FSH). Test results of clinical sample had good correlation with CLIA (R² =0.96, P<0.05). CONCLUSION: The superparamagnetic particles labeled immuno-chromatography method is simple and rapid, and is expected to become a direction in the development for point-of-care test (POCT) quantitative detection of micro components in biological sample.


Subject(s)
Chromatography , Antibodies, Monoclonal , Chorionic Gonadotropin , Follicle Stimulating Hormone , Humans , Luteinizing Hormone , Reproducibility of Results , Thyrotropin
SELECTION OF CITATIONS
SEARCH DETAIL
...