Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 247: 118245, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244966

ABSTRACT

Recovering waste NH3 to be used as a source of nitrogen fertilizer or liquid fuel has recently attracted much attention. Current methods mainly utilize activated carbon or metal-organic frameworks to capture NH3, but are limited due to low NH3 adsorption capacity and high cost, respectively. In this study, novel porous materials that are low cost and easy to synthesize were prepared as NH3 adsorbents by precipitation polymerization with acid optimization. The results showed that adsorption sites (‒COOH, -OH, and lactone) which form chemical adsorption or hydrogen bonds with NH3 were successfully regulated by response surface methods. Correspondingly, the dynamic NH3 adsorption capacity increased from 5.45 mg g-1 to 129 mg g-1, which is higher than most known activated carbon and metal-organic frameworks. Separation performance tests showed that NH3 could also be separated from CO2 and CH4. The findings in this study will advance the industrialization of NH3 polymer adsorbents and provide technical support for the recycling of waste NH3.


Subject(s)
Ammonia , Metal-Organic Frameworks , Ammonia/chemistry , Fertilizers , Nitrogen , Charcoal/chemistry
2.
Food Funct ; 13(5): 2846-2856, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35179170

ABSTRACT

Obesity is a serious global health issue, and the societal interventions during the COVID-19 pandemic may have perturbed energy homeostasis, which affects the condition of obesity. Tea is a traditional beverage in Asia and has been shown to provide many beneficial health effects. Oolong tea is semifermented, with its chemical composition comprising features of green (unfermented) and black (fermented) tea. Although green tea has anti-obesity properties, studies on the anti-obesity ability of oolong tea are still scarce. In this study, we analyzed the chemical composition of oolong tea extract (OTE) and investigated the effects of OTE on high-fat diet-induced obese rats. OTE contained more (-)-epigallocatechin-3-gallate, (-)-epigallocatechin, and (-)-gallocatechin-3-gallate than theaflavins and theasinensins. Rats fed with a high-fat diet (HFD) and treated with 0.5% OTE exhibited significantly reduced body weight and visceral fat weight compared with the HFD-only group. OTE also decreased adipocyte size, lipogenesis-related protein sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN) protein expression and increased thermogenesis-related protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and uncoupling protein 1 (UCP1) protein expression in epididymal adipose tissue compared with the HFD group. Moreover, the OTE groups had a significantly higher abundance of Candidatus arthromitus and Hydrogenoanaerobacterium and a lower abundance of Ruminococcus1, Oscillibacter, and Odoribacter compared with the HFD group. All these results show that OTE can alleviate weight gain by regulating lipid metabolism and modulating the distribution of the gut microbiota to decrease lipid accumulation in adipose tissue.


Subject(s)
Anti-Obesity Agents/pharmacology , Plant Extracts/pharmacology , Tea , Adipose Tissue/metabolism , Animals , Anti-Obesity Agents/chemistry , Diet, High-Fat , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects , Male , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
3.
J Agric Food Chem ; 68(35): 9345-9357, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786868

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease due to lipid accumulation in the hepatocyte. Diet, especially a high-fat diet, is one risk factor that leads to NAFLD. Many natural compounds such as isoflavones have antiobesity effects. Therefore, intake of these functional compounds through daily dietary choices is a method of improving health. Miso is a kind of fermented soy paste, which is rich in isoflavones and has a different biological activity. In this study, we investigated the effects of different concentrations of fermented soy paste on NAFLD in high-fat-diet (HFD)-fed Sprague-Dawley (SD) rats. The results showed that 2% fermented soy paste decreased serum triacylglycerol (TG) and alanine aminotransferase (ALT) and reduced lipid accumulation in the liver through induced fatty acid oxidation by activating the adenosine 5'-monophosphate -activated protein kinase (AMPK) pathway and increasing PGC1α and CPT1α protein expression. Furthermore, we found that 2% fermented soy paste increased the abundance of Prevotellaceae NK3B31 and Desulfovibrio. Taken together, fermented soy paste improved HFD-induced lipid accumulation in the liver by activating fatty acid oxidation and modulating gut microbiota.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Gastrointestinal Microbiome , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/diet therapy , Soy Foods/analysis , AMP-Activated Protein Kinases/genetics , Alanine Transaminase/metabolism , Animals , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Humans , Liver/enzymology , Male , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Sprague-Dawley , Soy Foods/microbiology , Triglycerides/metabolism
4.
Chemosphere ; 246: 125731, 2020 May.
Article in English | MEDLINE | ID: mdl-31918083

ABSTRACT

Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and the majority of them have been proved to be detrimental to human health. The hazardous VOCs were studied very insufficiently in China, despite the enormous emissions of VOCs. In this study, the concentrations and sources of 17 hazardous VOCs reported in literature were reviewed, based on which the health effects were assessed. In-depth survey indicated that benzene and toluene had the highest concentrations in eastern China (confined to the study regions reviewed, same for the other geographic generalization), which however showed significant declines. The southern China featured high levels of trichloroethylene. Dichloromethane and chloroform were observed to be concentrated in northern China. The distributions of 1,2-dichloropropane and tetrachloroethylene were homogeneous across the country. Basically consistent with the spatial patterns of ozone, the summertime formaldehyde exhibited higher levels in eastern and northern China, and increased continuously. While transportation served as the largest source of benzene and toluene, industrial emissions and secondary formation were the predominant contributors of halogenated hydrocarbons and aldehydes (formaldehyde and acetaldehyde), respectively. The chronic non-cancer effects of inhalation exposure to the hazardous VOCs were insignificant, however the probabilities of developing cancers by inhaling the hazardous VOCs in ambient air of China were quite high. Formaldehyde was identified as the primary carcinogenic VOC in the atmosphere of most regions. The striking results, especially the high inhalation cancer risks, alerted us that the emission controls of hazardous VOCs were urgent in China, which must be grounded upon full understanding of their occurrence, presence and health effects.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Volatile Organic Compounds/analysis , Aldehydes , Atmosphere , Benzene , China , Formaldehyde , Humans , Inhalation Exposure/statistics & numerical data , Ozone , Toluene
5.
Proc Math Phys Eng Sci ; 474(2220): 20180492, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30602933

ABSTRACT

Diesel engine emissions are by far the largest source of nanoparticles in many urban atmospheres, in which they dominate the particle number count, and may present a significant threat to public health. This paper reviews knowledge of the composition and atmospheric properties of diesel exhaust particles, and exemplifies research in this field through a description of the FASTER project (Fundamental Studies of the Sources, Properties and Environmental Behaviour of Exhaust Nanoparticles from Road Vehicles) which studied the size distribution-and, in unprecedented detail, the chemical composition-of nanoparticles sampled from diesel engine exhaust. This information has been systematized and used to inform the development of computational modules that simulate the behaviour of the largely semi-volatile content of the nucleation mode particles, including consequent effects on the particle size distribution, under typical atmospheric conditions. Large-eddy model studies have informed a simpler characterization of flow around the urban built environment, and include aerosol processes. This modelling and engine-laboratory work have been complemented by laboratory measurements of vapour pressures, and the execution of two field measurement campaigns in London. The result is a more robust description of the dynamical behaviour on the sub-kilometre scale of diesel exhaust nanoparticles and their importance as an urban air pollutant.

6.
Faraday Discuss ; 189: 69-84, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27137954

ABSTRACT

A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and without a DOC. The results indicate that the DOC tested is of very limited efficiency, under the studied engine operating conditions, for removal of SVOCs, especially at the upper end of the molecular weight range.

SELECTION OF CITATIONS
SEARCH DETAIL
...