Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastrointest Oncol ; 16(6): 2727-2741, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994152

ABSTRACT

BACKGROUND: Previous studies have shown that the Shi-pi-xiao-ji (SPXJ) herbal decoction formula is effective in suppressing hepatocellular carcinoma (HCC), but the underlying mechanisms are not known. Therefore, this study investigated whether the antitumor effects of the SPXJ formula in treating HCC were mediated by acetyl-coA acetyltransferase 1 (ACAT1)-regulated cellular stiffness. Through a series of experiments, we concluded that SPXJ inhibits the progression of HCC by upregulating the expression level of ACAT1, lowering the level of cholesterol in the cell membrane, and altering the cellular stiffness, which provides a new idea for the research of traditional Chinese medicine against HCC. AIM: To investigate the anti-tumor effects of the SPXJ formula on the malignant progression of HCC. METHODS: HCC cells were cultured in vitro with SPXJ-containing serum prepared by injecting SPXJ formula into wild-type mice. The apoptotic rate and proliferative, invasive, and migratory abilities of control and SPXJ-treated HCC cells were compared. Atomic force microscopy was used to determine the cell surface morphology and the Young's modulus values of the control and SPXJ-treated HCC cells. Plasma membrane cholesterol levels in HCC cells were detected using the Amplex Red cholesterol detection kit. ACAT1 protein levels were estimated using western blotting. RESULTS: Compared with the vehicle group, SPXJ serum considerably reduced proliferation of HCC cells, increased stiffness and apoptosis of HCC cells, inhibited migration and invasion of HCC cells, decreased plasma membrane cholesterol levels, and upregulated ACAT1 protein levels. However, treatment of HCC cells with the water-soluble cholesterol promoted proliferation, migration, and invasion of HCC cells as well as decreased cell stiffness and plasma membrane cholesterol levels, but did not alter the apoptotic rate and ACAT1 protein expression levels compared with the vehicle control. CONCLUSION: SPXJ formula inhibited proliferation, invasion, and migration of HCC cells by decreasing plasma membrane cholesterol levels and altering cellular stiffness through upregulation of ACAT1 protein expression.

2.
Front Oncol ; 13: 1251873, 2023.
Article in English | MEDLINE | ID: mdl-37746259

ABSTRACT

Aim: To investigate the causal relationship of serum lipid indicators and lipid-lowering drugs with the risk of liver cancer using Mendelian randomization study. Methods: A two-sample Mendelian randomization (TSMR) study was performed to investigate the causal relationship between serum levels of lipid indicators and liver cancer, including low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG), total cholesterol (TC), Apolipoprotein B (ApoB), and Apolipoprotein A1 (ApoA1).Furthermore, instrumental variable weighted regression (IVW) and summary data-based MR (SMR) analyses were performed to investigate the causal effects of lipid-lowering drugs, including statins and PCSK9 inhibitors, on the risk of liver cancer. Results: Serum LDL-c and serum TC levels showed negatively associated with liver cancer (n = 22 SNPs, OR = 0.363, 95% CI = 0.231 - 0.570; p = 1.070E-5) (n = 83 SNPs; OR = 0.627, 95% CI = 0.413-0.952; p = 0.028). However, serum levels of TG, HDL-c, and ApoA1 did not show any significant correlation with liver cancer. In the drug target MR (DMR) analyses, HMGCR-mediated level of LDL-c showed an inverse relationship with the risk of liver cancer in the IVW-MR analysis (n = 5 SNPs, OR = 0.201, 95% CI = 0.064 - 0.631; p = 5.95E-03) and SMR analysis (n = 20 SNPs, OR = 0.245, 95% CI = 0.065 - 0.926; p = 0.038) However, PCSK9 did not show any significant association with liver cancer based on both the IVW-MR and SMR analyses. Conclusion: Our results demonstrated that reduced levels of LDL-c and TC were associated with an increased risk of liver cancer. Furthermore, lipid-lowering drugs targeting HMGCR such as statins were associated with increased risk of liver cancer.

3.
J Cancer ; 13(11): 3199-3208, 2022.
Article in English | MEDLINE | ID: mdl-36118525

ABSTRACT

Background: Multiple studies have reported that the immune system is under the control of a circadian clock, especially in cancers, but how circadian clock genes shape tumor immune cell infiltration in hepatocellular carcinoma (HCC) remains unclear. Methods: The rhythmicity of circadian clock genes was investigated using the GETx database. The expression and methylation level of circadian clock genes in HCC and paracancerous was evaluated using the GETx and TCGA databases. The differential expression of circadian clock genes in HCC was analyzed using the "limma" package of the R 4.0.4 software. The prognosis of each circadian clock gene was accessed by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. Quantitative real-time PCR and immunohistochemistry (IHC) was carried out to confirm the results. The relationship between circadian rhythm and immune infiltration in HCC was evaluated using the TIMER database and the CIBERSORT algorithm. Results: In addition to RORA, RORB, and ARNTL2, there was a rhythmic expression of other circadian clock genes in liver tissue. The correlation between the expression of circadian clock genes differed when comparing HCC and liver tissue. HCC patients who express low levels of PER-1and CRY2 had a poor overall survival (OS). In contrast, patients with higher expression of NPAS2 had a poor prognosis. In HCC, the expression of the PER-1, CRY2, and NPAS2 genes was closely related to immune infiltration. Conclusion: Our study indicated the disruption of the expression of circadian clock-regulated genes in HCC and identified PER-1, CRY2, and NPAS2 as independent predictors of survival. These genes may be applied as candidate molecular targets for diagnosis and therapy of HCC.

4.
ACS Appl Bio Mater ; 1(5): 1398-1407, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-34996244

ABSTRACT

This work describes an all-biomass fluorescent hydrogel fabricated by functionalizing alginate (ALg) and cellulose nanofibers (CNF) hydrogels with fluorescent biomass carbon dots (CQDs) derived from glucose, xylose, and glucosamine. The biomass CQDs played dual functions in the composite hydrogels: first, endowing hydrogels with good fluorescent characters; second, enhancing the mechanical properties of hydrogels because of the cross-linking effect of the abundant oxygen-containing groups or amino groups on surface with ALg or CNF. The elastic modulus of ALg hydrogel and CNF hydrogel was increased by 4.7 times and 1.5 times, respectively, by the adding CQDs. As a proof of concept, ALg/CQDs-3 hydrogel and CNF/CQDs-3 hydrogel were used to detect Fe3+ ions and gold nanoparticle (AuNPs) in aqueous solution, showing high sensitivity. The prepared all-biomass fluorescent hydrogels hold great potential in biological imaging, biosensing, and biological monitoring fields.

5.
ACS Appl Mater Interfaces ; 8(27): 17478-88, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27314592

ABSTRACT

The recent discovery of biomass-derived carbon quantum dots (CQDs) offers the potential to extend the sensing and imaging capabilities of quantum dots (QDs) to applications that require biocompatibility and environmental friendliness. Many studies have confirmed the exciting optical properties of CQDs and suggested a range of applications, but realizing the potential of CQDs will require a deeper fundamental understanding of their photophysical behavior. Here, biomass-derived CQDs were synthesized by hydrothermal processing methods from the aminopolysaccharide chitosan, and their fluorescence quenching behaviors were investigated. A family of nitroaromatics with different ring substituents was used to generate systematically varying CQD-quenching behaviors. Experimental evidence including a correlation between quenching constant and spectral overlap, fluorescence lifetime decay, and donor-acceptor distance all demonstrate that the primary mechanism for QCD-quenching is Förster resonance energy transfer (FRET) and not electron transfer. Spectroelectrochemical studies with redox-dependent quenching molecules and studies with complex dye molecules further support this conclusion. We envision this fundamental understanding of CQDs will facilitate the application of these emerging nanomaterials for sensing and imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...