Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(22): 26993-27001, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37218801

ABSTRACT

Bi2Se3, as a novel 3D topological insulator (TI), is expected to be a strong candidate for next-generation optoelectronic devices due to its intriguing optical and electrical properties. In this study, a series of Bi2Se3 films with different thicknesses of 5-40 nm were successfully prepared on planar-Si substrates and developed as self-powered light position-sensitive detectors (PSDs) by introducing lateral photovoltaic effect (LPE). It is demonstrated that the Bi2Se3/planar-Si heterojunction shows a broad-band response range of 450-1064 nm, and the LPE response is strongly dependent on the Bi2Se3 layer thickness, which can be mainly attributed to the thickness-modulated longitudinal carrier separation and transport. The 15 nm thick PSD shows the best performance with a position sensitivity of up to 89.7 mV/mm, a nonlinearity of lower than 7%, and response time as fast as 62.6/49.4 µs. Moreover, to further enhance the LPE response, a novel Bi2Se3/pyramid-Si heterojunction is built by constructing a nanopyramid structure for the Si substrate. Owing to the improvement of the light absorption capability in the heterojunction, the position sensitivity is largely boosted up to 178.9 mV/mm, which gets an increment of 199% as compared with that of the Bi2Se3/planar-Si heterojunction device. At the same time, the nonlinearity is still kept within 10% as well due to the excellent conduction property of the Bi2Se3 film. In addition, an ultrafast response speed of 173/97.4 µs is also achieved in the newly proposed PSD with excellent stability and reproducibility. This result not only demonstrates the great potential of TIs in PSD but also provides a promising approach for tuning its performance.

2.
Opt Express ; 30(22): 40491-40504, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298981

ABSTRACT

Sb2Se3 exhibits fascinating optical and electrical properties owing to its unique one-dimensional crystal structure. In this study, a Sb2Se3-nanorod/CdS core-shell heterostructure was successfully constructed, and the lateral photovoltaic effect (LPE), as well as the lateral photocurrent and photoresistance effects, were first studied. The measurements indicate that this heterojunction exhibits excellent lateral photoelectric performance in a broad range of 405-1064 nm with the best position sensitivities (PSs) of 525.9 mV/mm, 79.1 µA/mm, and 25.6 kΩ/mm for the lateral photovoltage, photocurrent, and photoresistance, respectively, while the nonlinearity is maintained below 7%, demonstrating its great potential in a novel high-performance multifunctional position sensitive detector (PSD). Moreover, this PSD could work well at different frequencies with good stability and repeatability, and the rise and fall times were deduced to be 48 and 180 µs, respectively. Besides, large linear working distances are achieved in this heterojunction PSD, and the PS can still reach 75.5 mV/mm even at an ultra-large working distance of 9 mm. These outstanding performances can be attributed to the high-quality Sb2Se3 nanorod arrays and the fast charge-carrier separation and transport properties of this core-shell heterojunction. This study provides important ideas for developing high-performance, broadband, large working distances, and ultrafast multifunctional PSDs based on the new core-shell heterostructure.

3.
J Exp Bot ; 72(15): 5612-5624, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33909897

ABSTRACT

It remains unclear whether the merger of two divergent genomes by hybridization at the homoploid level or coupled with whole-genome duplication (WGD; allopolyploidy) can result in plants having better tolerance to stress conditions. In this study, we compared phenotypic performance and gene expression in the two diploid subspecies of rice (Oryza sativa subsp. japonica and indica), their reciprocal F1 hybrids, and in segmental allotetraploids under normal and nitrogen (N)-deficient conditions. We found that F1 hybrids and tetraploids showed higher and similar levels of tolerance to N deficiency than either parent. In parallel, total expression levels of 18 relevant functional genes were less perturbed by N deficiency in the F1 hybrids and tetraploids than in the parents. This was consistent with stable intrinsic partitioning of allelic/homoeologous expression defined by parental legacy in the homoploid F1 hybrids/tetraploids between the two conditions. The results suggest that genetic additivity at both the homoploid and allopolyploidy level might lead to similar beneficial phenotypic responses to nitrogen stress compared with the parents. The lack of synergistic responses to N limitation concomitant with WGD, relative to that exhibited by F1 hybrids, adds new empirical evidence in support of the emerging hypothesis that hybridization by itself can play a significant role in plant adaptive evolution in times of stress.


Subject(s)
Oryza , Alleles , Hybridization, Genetic , Nitrogen , Oryza/genetics , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...