Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Curr Med Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38333975

ABSTRACT

Given the threat of ever-growing cancer morbidity, it is a cutting-edge frontier for multiple disciplines to apply nanotechnology in cancer therapy. Nanomedicine is now perpetually influencing the diagnosis and treatment of cancer. Meanwhile, tumorigenesis and cancer progression are intimately associated with inflammation. Inflammation can implicate in various tumor progression via the same or different pathways. Therefore, current nanomedicines exhibit tumor-suppressing function through inflammatory pathways. At present, the comprehensive understanding and research on the mechanism of various nanoparticles in cancer treatment are still in progress. In this review, we summarized the applications of nanomedicine in tumor-targeting inflammatory pathways, suggesting that nanoparticles could be a budding star for cancer therapy.

2.
Nat Commun ; 15(1): 501, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218730

ABSTRACT

The photovoltaic effect lies at the heart of eco-friendly energy harvesting. However, the conversion efficiency of traditional photovoltaic effect utilizing the built-in electric effect in p-n junctions is restricted by the Shockley-Queisser limit. Alternatively, intrinsic/bulk photovoltaic effect (IPVE/BPVE), a second-order nonlinear optoelectronic effect arising from the broken inversion symmetry of crystalline structure, can overcome this theoretical limit. Here, we uncover giant and robust IPVE in one-dimensional (1D) van der Waals (vdW) grain boundaries (GBs) in a layered semiconductor, ReS2. The IPVE-induced photocurrent densities in vdW GBs are among the highest reported values compared with all kinds of material platforms. Furthermore, the IPVE-induced photocurrent is gate-tunable with a polarization-independent component along the GBs, which is preferred for energy harvesting. The observed IPVE in vdW GBs demonstrates a promising mechanism for emerging optoelectronics applications.

3.
Environ Microbiol ; 25(12): 2943-2957, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602917

ABSTRACT

Extracellular electron transfer (EET) empowers electrogens to catalyse the bioconversion of a wide range of xenobiotics in the environment. Synthetic bioengineering has proven effective in promoting EET output. However, conventional strategies mainly focus on modifications of EET-related genes or pathways, which leads to a bottleneck due to the intricate nature of electrogenic metabolic properties and intricate pathway regulation that remain unelucidated. Herein, we propose a novel EET pathway-independent approach, from an energy manipulation perspective, to enhance microbial EET output. The Controlled Hydrolyzation of ATP to Enhance Extracellular Respiration (CHEER) strategy promotes energy utilization and persistently reduces the intracellular ATP level in Shewanella oneidensis, a representative electrogenic microbe. This approach leads to the accelerated consumption of carbon substrate, increased biomass accumulation and an expanded intracellular NADH pool. Both microbial electrolysis cell and microbial fuel cell tests exhibit that the CHEER strain substantially enhances EET capability. Analysis of transcriptome profiles reveals that the CHEER strain considerably bolsters biomass synthesis and metabolic activity. When applied to the bioconversion of model xenobiotics including methyl orange, Cr(VI) and U(VI), the CHEER strain consistently exhibits enhanced removal efficiencies. This work provides a new perspective and a feasible strategy to enhance microbial EET for efficient xenobiotic conversion.


Subject(s)
Shewanella , Xenobiotics , Xenobiotics/metabolism , Electron Transport , Cell Respiration , Shewanella/genetics , Shewanella/metabolism , Respiration , Adenosine Triphosphate/metabolism
4.
Nat Commun ; 14(1): 4230, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454221

ABSTRACT

Bulk photovoltaic effect (BPVE), a second-order nonlinear optical effect governed by the quantum geometric properties of materials, offers a promising approach to overcome the Shockley-Quiesser limit of traditional photovoltaic effect and further improve the efficiency of energy harvesting. Here, we propose an effective platform, the nano edges embedded in assembled van der Waals (vdW) homo- or hetero-structures with strong symmetry breaking, low dimensionality and abundant species, for BPVE investigations. The BPVE-induced photocurrents strongly depend on the orientation of edge-embedded structures and polarization of incident light. Reversed photocurrent polarity can be observed at left and right edge-embedded structures. Our work not only visualizes the unique optoelectronic effect in vdW nano edges, but also provides an effective strategy for achieving BPVE in engineered vdW structures.

5.
Cell Commun Signal ; 21(1): 182, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488602

ABSTRACT

Cell migration is a highly orchestrated process requiring the coordination between the cytoskeleton, cell membrane and extracellular matrix adhesions. Our previous study demonstrated that Hax1 interacts with EB2, a microtubule end-binding protein, and this interaction regulate cell migration in keratinocytes. However, little is known about the underlying regulatory mechanism. Here, we show that Hax1 links dynamic focal adhesions to regulate cell migration via interacting with IQGAP1, a multidomain scaffolding protein, which was identified by affinity purification coupled with LC-MS/MS. Biochemical characterizations revealed that C-terminal region of Hax1 and RGCT domain of IQGAP1 are the most critical binding determinants for its interaction. IQGAP1/Hax1 interaction is essential for cell migration in MCF7 cells. Knockdown of HAX1 not only stabilizes focal adhesions, but also impairs the accumulation of IQGAP in focal adhesions. Further study indicates that this interaction is critical for maintaining efficient focal adhesion turnover. Perturbation of the IQGAP1/Hax1 interaction in vivo using a membrane-permeable TAT-RGCT peptide results in impaired focal adhesion turnover, thus leading to inhibition of directional cell migration. Together, our findings unravel a novel interaction between IQGAP1 and Hax1, suggesting that IQGAP1 association with Hax1 plays a significant role in focal adhesion turnover and directional cell migration. Video Abstract.


Subject(s)
Focal Adhesions , Tandem Mass Spectrometry , Chromatography, Liquid , Cell Membrane
6.
Parasit Vectors ; 16(1): 134, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072796

ABSTRACT

BACKGROUND: Insulin-like signaling (IS) in insects is a conserved pathway that regulates development, reproduction and longevity. Insulin-like peptides (ILPs) activate the IS pathway by binding to the insulin receptor (InR) and trigger the ERK and AKT cascades. A varying number of ILPs were identified in Aedes aegypti mosquito and other insects. Aedes albopictus is an invasive mosquito which transmits dengue and Zika viruses worldwide. Until now, the molecular and expression characteristics of IS pathway in Ae. albopictus have not been investigated. METHODS: The orthologues of ILP in Ae. albopictus genome assembly was analyzed by using sequence blast. Phylogenetic analysis and molecular characterization were performed to identify the functional domains of ILPs. Quantitative analysis was performed to determine the expression characteristics of ILPs, InR as well as ERK and AKT in mosquito development and different tissues of female adults after blood-feeding. In addition, the knockdown of InR was achieved by feeding larvae with Escherichia coli-producing dsRNA to investigate the impact of IS pathway on mosquito development. RESULTS: We identified seven putative ILP genes in Ae. albopictus genome assembly, based on nucleotide similarity to the ILPs of Ae. aegypti and other insects. Bioinformatics and molecular analyses suggested that the ILPs contain the structural motif which is conserved in the insulin superfamily. Expression levels of ILPs, InR as well as ERK and AKT varied in Ae. albopictus development stages and between male and female adults. Quantitative analyses revealed that expression of ILP6, the putative orthologue of the insulin growth factor peptides, was highest in the midgut of female adults after blood-feeding. Knockdown of Ae. albopictus InR induces a significant decrease in the phosphorylation levels of ERK and AKT proteins and results in developmental delays and smaller body sizes. CONCLUSIONS: The IS pathway of Ae. albopictus mosquito contains ILP1-7, InR and ERK/AKT cascades, which exhibited different developmental and tissue expression characteristics. Feeding Ae. albopictus larvae with E. coli-producing InR dsRNA blocks the ERK and AKT cascades and interferes with the development of mosquito. Our data suggest that IS pathway plays an important role in the metabolism and developmental process and could represent a potential target for controlling mosquito-borne diseases.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Male , Female , Aedes/physiology , Insulin , Proto-Oncogene Proteins c-akt/genetics , Phylogeny , Escherichia coli/genetics , Escherichia coli/metabolism , Peptides/genetics , Mosquito Vectors/physiology
7.
Environ Sci Technol ; 57(1): 674-684, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36576943

ABSTRACT

Microbial extracellular electron transfer (EET) is the basis for many microbial processes involved in element geochemical recycling, bioenergy harvesting, and bioremediation, including the technique for remediating U(VI)-contaminated environments. However, the low EET rate hinders its full potential from being fulfilled. The main challenge for engineering microbial EET is the difficulty in optimizing cell resource allocation for EET investment and basic metabolism and the optimal coordination of the different EET pathways. Here, we report a novel combinatorial optimization strategy with a physiologically adapted regulatory platform. Through exploring the physiologically adapted regulatory elements, a 271.97-fold strength range, autonomous, and dynamic regulatory platform was established for Shewanella oneidensis, a prominent electrochemically active bacterium. Both direct and mediated EET pathways are modularly reconfigured and tuned at various intensities with the regulatory platform, which were further assembled combinatorically. The optimal combinations exhibit up to 16.12-, 4.51-, and 8.40-fold improvements over the control in the maximum current density (1009.2 mA/m2) of microbial electrolysis cells and the voltage output (413.8 mV) and power density (229.1 mW/m2) of microbial fuel cells. In addition, the optimal strains exhibited up to 6.53-fold improvement in the radionuclide U(VI) removal efficiency. This work provides an effective and feasible approach to boost microbial EET performance for environmental applications.


Subject(s)
Bioelectric Energy Sources , Shewanella , Electrons , Electron Transport , Biodegradation, Environmental , Shewanella/metabolism
8.
Front Cell Infect Microbiol ; 12: 1050396, 2022.
Article in English | MEDLINE | ID: mdl-36506034

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is a typical gram-negative iatrogenic bacterium that often causes bacteremia, pneumonia and urinary tract infection particularly among those with low immunity. Although antibiotics is the cornerstone of anti-infections, the clinical efficacy of ß-lactamase and carbapenems drugs has been weakened due to the emergence of drug-resistant K. pneumoniae. Recent studies have demonstrated that host defense plays a critical role in killing K. pneumoniae. Here, we summarize our current understanding of host immunity mechanisms against K. pneumoniae, including mechanical barrier, innate immune cells, cellular immunity and humoral immunity, providing a theoretical basis and the new strategy for the clinical treatment of K. pneumoniae through improving host immunity.


Subject(s)
Anti-Bacterial Agents , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Carbapenems/pharmacology , Carbapenems/therapeutic use , beta-Lactamases
9.
World J Gastroenterol ; 27(25): 3837-3850, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34321848

ABSTRACT

Obesity is a major global health problem determined by heredity and environment, and its incidence is increasing yearly. In recent years, increasing evidence linking obesity to the gut microbiota has been reported. Gut microbiota management has become a new method of obesity treatment. However, the complex interactions among genetics, environment, the gut microbiota, and obesity remain poorly understood. In this review, we summarize the characteristics of the gut microbiota in obesity, the mechanism of obesity induced by the gut microbiota, and the influence of genetic and environmental factors on the gut microbiota and obesity to provide support for understanding the complex relationship between obesity and microbiota. At the same time, the prospect of obesity research related to the gut microbiota is proposed.


Subject(s)
Gastrointestinal Microbiome , Dysbiosis , Humans , Obesity
10.
Bioinformatics ; 37(18): 3086-3087, 2021 09 29.
Article in English | MEDLINE | ID: mdl-33677518

ABSTRACT

MOTIVATION: Microscopy technology plays important roles in many biological research fields. Solvent-cleared brain high-resolution (HR) 3D image reconstruction is an important microscopy application. However, 3D microscopy image generation is time-consuming and expensive. Therefore, we have developed a deep learning framework (DeepS) for both image optical sectioning and super resolution microscopy. RESULTS: Using DeepS to perform super resolution solvent-cleared mouse brain microscopy 3D image yields improved performance in comparison with the standard image processing workflow. We have also developed a web server to allow online usage of DeepS. Users can train their own models with only one pair of training images using the transfer learning function of the web server. AVAILABILITYAND IMPLEMENTATION: http://deeps.cibr.ac.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Deep Learning , Microscopy , Animals , Mice , Computers , Image Processing, Computer-Assisted , Imaging, Three-Dimensional
11.
Data Brief ; 31: 105686, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32435682

ABSTRACT

This paper introduces a benchmark dataset to the research article entitled "Ensemble framework by using nature inspired algorithms for the early-stage forest fire rescue - a case study of dynamic optimization problems", by Zhang et al. [7]. Rescue ensemble that consists of rescue simulator and rescue algorithm is characterized by supporting the dynamic simulation of forest fire rescue. The purpose of rescue algorithm is to minimize the longest flight time of aircraft group II and the newly-increased burnt forest cost in one period, simultaneously. The map information in our dataset is from Google map and relevant parameters are also from the actual situation data. The benchmark contains 10 different maps that researchers can use to evaluate their own algorithms and compare their performance with our algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...