Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
J Ethnopharmacol ; 328: 117917, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38442807

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The adverse effects of Fructus Psoraleae (FP), especially liver injury, have attracted wide attention in recent years. AIM OF THE STUDY: To establish a system to explore potential hepatotoxic targets and the chief culprit of liver injury based on clinical experience, network pharmacological method, molecular docking, and in vitro and in vivo experiments. MATERIALS AND METHODS: Clinical applications and adverse reactions to FP were obtained from public literatures. Components absorbed in the blood were selected as candidates to search for potential active targets (PATs) of FP. Subsequently, potential pharmacological core targets (PPCTs) were screened through the "drug targets-disease targets" network. Non-drug active targets (NPATs) were obtained by subtracting the PPCTs from the PATs. The potential hepatotoxic targets (PHTs) of FP were the intersection targets obtained from Venn analysis using NPATs, hepatotoxic targets, and adverse drug reaction (ADR) targets provided by the databases. Then, potential hepatotoxic components and targets were obtained using the "NPATS-component" network relationship. Molecular docking and in vitro and in vivo hepatotoxicity experiments were performed to verify the targets and related components. RESULTS: Overall, 234 NPATs were acquired from our analysis, and 6 targets were identified as PHTs. Results from molecular docking and in vitro and in vivo experiments showed that angelicin is the leading cause of liver injury in FP, and VKORC1 plays an important role. CONCLUSION: The results indicate that six targets, especially VKORC1, are associated with the PHTs of FP, and angelicin is the leading culprit involved in FP liver injury via inhibition of VKORC1.


Subject(s)
Drugs, Chinese Herbal , Furocoumarins , Psoralea , Molecular Docking Simulation , Liver , Furocoumarins/adverse effects , Plant Extracts/pharmacology , Drugs, Chinese Herbal/pharmacology
2.
Am J Pathol ; 194(6): 1078-1089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38417697

ABSTRACT

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.


Subject(s)
Diabetic Retinopathy , Ferroptosis , Reactive Oxygen Species , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Animals , Humans , Mice , Male , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Lipid Peroxidation , Mice, Inbred C57BL , Microvessels/pathology , Microvessels/metabolism , Iron/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology
3.
World J Gastrointest Oncol ; 16(1): 79-89, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38292851

ABSTRACT

BACKGROUND: Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer. However, there is a debate concerning their differential effects on cognitive function, anxiety, and depression in patients undergoing this procedure. AIM: To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function, anxiety, depression, and organ function in patients undergoing radical resection of gastric cancer. METHODS: A total of 80 patients were involved in this research. The subjects were divided into two groups: Propofol group and sevoflurane group. The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment (LOTCA), and anxiety and depression were assessed with the aid of the self-rating anxiety scale (SAS) and self-rating depression scale (SDS). Hemodynamic indicators, oxidative stress levels, and pulmonary function were also measured. RESULTS: The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group. Additionally, the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group. The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group. Moreover, the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group. CONCLUSION: Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer. Propofol anesthesia has a minimal effect on patients' pulmonary function, consequently enhancing their postoperative recovery. Sevoflurane anesthesia causes less impairment on patients' cognitive function and mitigates negative emotions, leading to an improved postoperative mental state. Therefore, the selection of anesthetic agents should be based on the individual patient's specific circumstances.

4.
J Colloid Interface Sci ; 658: 383-391, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38113547

ABSTRACT

Local electronic structure engineering is an effective approach for optimizing the catalytic performance of electrocatalysts. Herein, a dual-phase vanadium-doped nickel phosphide (NiVxP) catalyst supported on nickel foam (NF) was synthesized via a successive hydrothermal and phosphorization process with interconnected nanosheet structures and homogeneous distributions. The catalyst's stable phase and strong adhesion to the substrate ensure good electrochemical stability. The incorporation of V effectively promotes initial H2O adsorption and H* formation, leading to a lower overpotential. As a result, the fabricated NiVxP@NF demonstrates favorable hydrogen evolution reaction (HER) activity and stability, with only 85 mV overpotential needed to reach 10 mA·cm-2 and showing no significant increase in the overpotential during the long-term 78-hour stability test.

5.
Adv Sci (Weinh) ; 11(10): e2305566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148412

ABSTRACT

Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.


Subject(s)
Receptors, Chimeric Antigen , Tumor Escape , T-Lymphocytes , Immunotherapy, Adoptive/methods , Immunotherapy
6.
AoB Plants ; 15(5): plad067, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37899981

ABSTRACT

Staminal hairs are the particular appendages of stamens, which may affect pollinator foraging behaviour and pollen transfer. However, experimental evidence of the functions of staminal hairs in pollination remains scarce. Here, we conducted staminal hair manipulation experiments in Tradescantia fluminensis (Commelinaceae) to investigate their effects on visitation and pollen transfer by bees. Our observations revealed that both visitation rates and visit duration of honeybees (Apis cerana) to control flowers were significantly higher than that of hairless flowers. Moreover, removing the staminal hairs significantly decreased pollen deposition by honeybees (A. cerana), but did not affect pollen removal. The staminal hair was similar in length to the stamen and the pistil of T. fluminensis. The staminal hairs provide more footholds for honeybees, and they lay prone on the staminal hairs to collect pollen, which increased the accuracy of pollination through the consistent pollen placement and pick-up on the ventral surface of honeybees. These results showed that the staminal hairs in T. fluminensis may represent an adaptation to attract pollinators and enhance pollination accuracy.

7.
Oncol Lett ; 26(5): 471, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37809050

ABSTRACT

Gemcitabine is one of the most widely used chemotherapy drugs for advanced malignant tumors, including non-small cell lung cancer. However, the clinical efficacy of gemcitabine is limited due to drug resistance. The aim of the present study was to investigate the role of p21 in gemcitabine-resistant A549 (A549/G+) lung cancer cells. IC50 values were determined using a Cell Counting Kit-8 (CCK-8) assay. mRNA and protein expression levels of genes were measured by reverse transcription-quantitative PCR and western blotting, respectively. The cell cycle distribution and apoptosis rate were analyzed by flow cytometry. DNA damage in cells was evaluated by single-cell gel electrophoresis. The results of western blot analysis and the CCK-8 assay demonstrated that the expression of p21 was higher in A549/G+ cells than in gemcitabine-sensitive cells. Knockdown of p21 expression in gemcitabine-resistant cells sensitized these cells to gemcitabine (with the IC50 decreasing from 84.2 to 26.7 µM). Cell cycle analysis revealed different changes in the cell cycle distribution in A549/G+ cells treated with the same concentration of gemcitabine, and decreased expression of p21 was shown to promote G1 arrest. The apoptosis assay and comet assay results revealed that decreased p21 expression resulted in accumulation of unrepaired DNA double-strand breaks (DSBs) and induction of apoptosis by gemcitabine. The present study demonstrated that knockout of p21 mRNA expression in A549/G+ cells promotes apoptosis and DNA DSB accumulation, accompanied by G1 arrest. These results indicated that p21 is involved in regulating the response of A549 cells to gemcitabine.

8.
Cancer Immunol Immunother ; 72(11): 3739-3753, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37707586

ABSTRACT

CD19 CAR-T (chimeric antigen receptor-T) cell immunotherapy achieves a remission rate of approximately 70% in recurrent and refractory lymphoma treatment. However, the loss or reduction of CD19 antigen on the surface of lymphoma cells results in the escape of tumor cells from the immune killing of CD19 CAR-T cells (CAR19-T). Therefore, novel therapeutic strategies are urgently required. In this study, an anti-CD79b/CD3 bispecific antibody (BV28-OKT3) was constructed and combined with CAR19-T cells for B-cell lymphoma treatment. When the CD19 antigen was lost or reduced, BV28-OKT3 redirected CAR19-T cells to CD79b+ CD19- lymphoma cells; therefore, BV28-OKT3 overcomes the escape of CD79b+ CD19- lymphoma cells by the killing action of CAR19-T cells in vitro and in vivo. Furthermore, BV28-OKT3 triggered the antitumor function of CAR- T cells in the infusion product and boosted the antitumor immune response of bystander T cells, markedly improving the cytotoxicity of CAR19-T cells to lymphoma cells in vitro and in vivo. In addition, BV28-OKT3 elicited the cytotoxicity of donor-derived T cells toward lymphoma cells in vitro, which depended on the presence of tumor cells. Therefore, our findings provide a new clinical treatment strategy for recurrent and refractory B-cell lymphoma by combining CD79b/CD3 BsAb with CAR19-T cells.


Subject(s)
Antibodies, Bispecific , Lymphoma, B-Cell , Lymphoma , Humans , T-Lymphocytes , Antigens, CD19 , Muromonab-CD3 , Lymphoma/drug therapy , Immunotherapy, Adoptive/methods
9.
Environ Toxicol ; 38(12): 2904-2914, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37555465

ABSTRACT

Bisphenol AF (BPAF), a BPA-substitute, has been widely used in industrial compounds throughout the world. Several studies have shown that BPAF has endocrine interference and reproductive toxicity. However, the toxic effects of BPAF on pregnancy and placenta of goats are still unclear. Therefore, the objective of this study was to reveal the toxic effect of BPAF by using an in vitro culture model of caprine endometrial epithelial cells (EECs) and further attempted to alleviate the toxicity by curcumin pretreatment. The results showed that BPAF induces significant effects on EECs, including decreased cell viability and mitochondrial membrane potential (△ψm), elevating intracellular reactive oxygen species (ROS), promoting cell apoptosis through upregulating the expression of Bax, Cytochrome c, and downregulating the expression of Bcl-2. Meanwhile, BPAF induced dysregulation of oxidative stress by increasing the levels of malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) but decreasing the activities of superoxide dismutase (SOD). However, curcumin pretreatment could significantly attenuate BPAF-induced toxic effects in EECs. Further study revealed that BPAF treatment could activate mitogen-activated protein kinase (MAPK) pathway and nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, but curcumin pretreatment significantly inhibited the activation of MAPK signal pathway and Nrf2 expression induced by BPAF. Overall, this study indicated that curcumin could prevent BPAF-induced EECs cytotoxicity, which provides a potential therapeutic strategy for female infertility associated with BPAF exposure.


Subject(s)
Curcumin , Animals , Female , Curcumin/pharmacology , NF-E2-Related Factor 2 , Goats , Oxidative Stress , Signal Transduction , Mitogen-Activated Protein Kinases , Epithelial Cells , Apoptosis
10.
Zootaxa ; 5306(2): 232-242, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37518526

ABSTRACT

The generic diagnostic characters of Paracercopis (Hemiptera: Cercopoidea: Cercopidae) are redefined and the autapomorphies are proposed to support the monophyly of the genus. Scanning electron micrographs of antennal sensilla and sensilla on rostral apex of P. seminigra (Melichar, 1902) are provided for the first time. A checklist together with new distribution records and key to the species of the genus are provided. Host plant associations of Paracercopis species are reported for the first time. Paracercopis unicolor Liang, Zhang & Xiao, sp. nov., representing the seventh and largest species of the genus is described from Hubei Province in south central China.


Subject(s)
Hemiptera , Animals , China , Microscopy , Sensilla
11.
Cell Cycle ; 22(11): 1367-1379, 2023 06.
Article in English | MEDLINE | ID: mdl-37115505

ABSTRACT

The main objective of this study is to investigate the regulatory roles of the miR-17-5p/RRM2 axis in A549/G+ cells' gemcitabine resistance. The cell viability was determined using CCK8 and clonogenic assays. Gene expression level analysis by RT-qPCR and Western blotting. Cell cycle analysis by flow cytometry. The dual luciferase activity assay was used to verify the target gene of miR-17-5p. In gemcitabine-resistant cell line A549G+, the drug resistance decreased after up-regulation of MiR-17-5p expression. The proportion of cell cycle G1 phase increased, and the S phase decreased. The expression level of cell cycle-related proteins CCNE1, CCNA2, and P21 decreased. The opposite results emerged after the down-regulation of MiR-17-5p expression in gemcitabine-sensitive cell line A549G-. The expression levels of PTEN and PIK3 in A549G+ cells were higher than in A549G-cells, but p-PTEN was lower than that in A549G-. After up-regulating the expression of MiR-17-5p in A549G+, the expression levels of p-PTEN increased, and the expression level of p-AKT decreased. After down-regulating miR-17-5p expression, the opposite results emerged. The dual-luciferase reporter assay and restorative experiments proved that RRM2 is one of the target genes for MiR-17-5p. Our results suggested that the miR-17-5p/RRM2 axis could adjust gemcitabine resistance in A549 cells, and the p-PTEN/PI3K/AKT signal pathway might be involved in this regulatory mechanism.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , Gemcitabine , A549 Cells , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Proliferation
12.
Environ Toxicol ; 38(8): 1800-1810, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37052413

ABSTRACT

Propyl gallate (PG) is one of the most widely used antioxidants in food products, cosmetics and pharmaceutical industries. Increased research has suggested that exposure to PG influences reproductive health in humans and animals. However, until now, it has not yet been confirmed whether PG would impact oocyte quality. In this study, the hazardous effects of PG on oocyte meiotic maturation were investigated in mice. The findings showed that PG exposure compromises oocyte meiosis by inducing mitochondrial stress which activates apoptosis to trigger oocyte demise. Moreover, DNA damage was significantly induced in PG-treated oocytes, which might be another cause of oocyte developmental arrest and degeneration. Besides, the level of histone methylation (H3K27me2 and H3K27me3) in oocyte was also significantly increased by PG exposure. Furthermore, PG-induced oxidative stress was validated by the increased level of reactive oxygen species (ROS), which might be the underlying reason for these abnormities. In conclusion, the foregoing findings suggested that PG exposure impaired oocyte meiotic maturation by yielding mitochondrial stress to activate apoptosis, inducing DNA damage and oxidative stress, and altering histone methylation level.


Subject(s)
Antioxidants , Propyl Gallate , Humans , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Propyl Gallate/metabolism , Propyl Gallate/pharmacology , Histones , Oocytes , Oxidative Stress , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Meiosis , DNA Damage , Apoptosis
13.
Ying Yong Sheng Tai Xue Bao ; 34(4): 913-920, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37078308

ABSTRACT

Understanding the effects of different tillage practices on functional microbial abundance and composition in nitrogen (N), phosphorus (P) and sulfur (S) cycles are essential for the sustainable utilization of black soils. Based on an 8-year field experiment located in Changchun, Jilin Province, we analyzed the abundance and composition of N, P and S cycling microorganisms and their driving factors in different depths of black soil under no til-lage (NT) and conventional tillage (CT). Results showed that compared with CT, NT significantly increased soil water content (WC) and microbial biomass carbon (MBC) at soil depth of 0-20 cm. Compared with CT, NT significantly increased the abundances of functional and encoding genes related to N, P and S cycling, including the nosZ gene encoding N2O reductase, the ureC gene performing organic nitrogen ammoniation, the nifH gene encoding nitrogenase ferritin, the functional genes phnK and phoD driving organic phosphorus mineralization, the encoding pyrroloquinoline quinone synthase ppqC gene and the encoding exopolyphosphate esterase ppX gene, and the soxY and yedZ genes driving sulfur oxidation. The results of variation partitioning analysis and redundancy analysis showed that soil basic properties were the main factors affecting the microbial composition of N, P and S cycle functions (the total interpretation rate was 28.1%), and that MBC and WC were the most important drivers of the functional potential of soil microorganisms in N, P and S cycling. Overall, long-term no tillage could increase the abundance of functional genes of soil microorganisms by affecting soil environment. From the perspective of molecular biology, our results elucidated that no tillage could be used as an effective soil management measure to improve soil health and maintain green agricultural development.


Subject(s)
Nitrogen , Soil , Sulfur , Agriculture/methods , Carbon , Phosphorus , Soil/chemistry , Soil Microbiology
14.
Haematologica ; 108(8): 2011-2028, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36794504

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising form of adoptive T-cell immunotherapy for selected hematologic malignancies including leukemia, lymphoma and multiple myeloma. China has become the country with the largest number of registered CAR T-cell trials. Despite the remarkable clinical outcomes achieved with CAR Tcell therapy, challenges such as disease relapse, the process of manufacturing the CAR T cells and safety have limited the therapeutic efficacy of CAR T cells in hematologic malignancies. In this period of innovation, several clinical trials have reported the design of CAR directed at new targets in hematologic malignancies. In this review, we comprehensively summarize the contemporary landscape and clinical development of CAR T-cell therapy in China. In addition, we present strategies for further improving the clinical utility of CAR T-cell therapy, such as increasing the efficacy and response duration, in hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Hematologic Neoplasms/pathology , Cell- and Tissue-Based Therapy
15.
Nanoscale ; 15(7): 3550-3559, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723134

ABSTRACT

Efficient and low-cost transition metal single-atom catalysts (TMSACs) for hydrogen evolution reaction (HER) have been recognized as research hotspots recently with advances in delivering good catalytic activity without noble metals. However, the high-cost complex preparation of TMSACs and insufficient stability limited their practical applications. Herein, a simple top-down pyrolysis approach to obtain P-modified Co SACs loaded on the crosslinked defect-rich carbon nanosheets was introduced for alkaline hydrogen evolution, where Co atoms are locally confined before pyrolysis to prevent aggregation. Thereby, the abundant defects and the unsaturated coordination formed during the pyrolysis significantly improved the stability of the monatomic structure and reduced the reaction barrier. Furthermore, the synergy between cobalt atoms and phosphorus atoms was established to optimize the decomposition process of water molecules, which delivers the key to promoting the slow reaction kinetics of alkaline HER. As the result, the cobalt SAC exhibited excellent catalytic activity and stability for alkaline HER, with overpotentials of 70 mV and 192 mV at current densities of -10 mA cm-2 and -100 mA cm-2, respectively.

16.
Eur J Pharmacol ; 937: 175381, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36368417

ABSTRACT

As a key mediator of cell death and inflammation, receptor-interacting protein kinase 1 (RIPK1) responds to a broad set of inflammatory and pro-death stimuli in human diseases. Inhibitors targeting RIPK1 are being investigated for the treatment of a wide range of human diseases, including ulcerative colitis. In the present study, we designed, synthesized, and investigated the anti-necroptosis and RIPK1-inhibition effects of SZ-15-a symmetrical high-molecular-weight (>500 Da) compound. SZ-15 effectively inhibited necroptosis in U937 and HT-29 cells at concentrations of 1 nM and 10 nM, respectively, and SZ-15 at a concentration of 10 nM almost completely blocked RIPK1, RIPK3, and mixed-lineage kinase domain-like (MLKL) protein phosphorylation induced by necrosis inducers. SZ-15 suppressed the pro-necroptosis function of RIPK1 by downregulating the mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. The activities of SZ-15 were effectively restricted to the gut: The percent recovery of the parent form of SZ-15 in mouse feces was 85.75%. Nevertheless, SZ-15 was effectively absorbed and detected in colon tissues after 1 h at a concentration of 3335 ± 868 ng/g, indicating that membrane permeability was maintained. SZ-15 alleviated dextran sulfate sodium (DSS)-induced ulcerative colitis in vivo by decreasing TNF-α, IL-1ß, IL-22, and IL-6 mRNA expression in colonic tissues. Our preclinical study describes a novel gut-restricted RIPK1 inhibitor that shows great potential for use in the clinical treatment of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Mice , Animals , Humans , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Dextran Sulfate , Interleukin-6/metabolism , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , RNA, Messenger , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
17.
Chem Biol Interact ; 368: 110192, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36174739

ABSTRACT

As a major public health achievement, disinfection of drinking water significantly decreases outbreaks of waterborne disease, but produces drinking water disinfection by-products (DBPs) unfortunately. The haloacetic acids (HAAs) including bromoacetic acid (BAA), the second major class of DBPs, are considered as a global public health concern. BAA has been identified as cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic in somatic cells. However, the toxic effects of BAA on oocyte maturation remain obscure. Herein, we documented that exposure to BAA compromised mouse oocyte maturation in vitro, causing blocked polar body extrusion (PBE). Meiotic progression analysis demonstrated that exposure to BAA induced the activated spindle assembly checkpoint (SAC) mediated metaphase I (MI) arrest in oocytes. Further study revealed that exposure to BAA resulted in the hyperacetylation of α-tubulin, disrupting spindle assembly and chromosome alignment, which is responsible for the activation of SAC. Besides, the organization of actin, the other major component of cytoskeleton in oocytes, was disturbed after BAA exposure. In addition, exposure to BAA altered the status of histone H3 methylation and 5 mC, indicative of the damaged epigenetic modifications. Moreover, we found that exposure to BAA induced DNA damage in a dose-dependent manner in oocytes. Collectively, our study evidenced that exposure to BAA intervened mouse oocyte maturation via disrupting cytoskeletal dynamics, damaging epigenetic modifications and inducing accumulation of DNA damage.


Subject(s)
Drinking Water , In Vitro Oocyte Maturation Techniques , Mice , Animals , Microtubules , Epigenesis, Genetic
18.
Inorg Chem ; 61(35): 13883-13892, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35998569

ABSTRACT

Radioactive iodine (129I and 131I), produced or released from nuclear-related activities, posed severe effects on both human health and environment. The efficient removal of radioiodine from aqueous medium and vapor phase is of paramount importance for the sustainable development of nuclear energy. Herein, a metal-organic framework (MOF) nanosheet with a positive charge was constructed for the capture of iodine for the first time. The as-synthesized ultrathin nanosheets, with a thickness of 4.4 ± 0.1 nm, showed a record-high iodine adsorption capacity (3704.08 mg g-1) from aqueous solution, which is even higher than that from the vapor phase (3510.05 mg g-1). It can be ascribed to the fully interactions between the extensive accessible active sites on the largely exposed surface of 2D MOF nanosheets and the target pollutants, which also gave rise to fast adsorption kinetics with relative high removal efficiencies in the low concentrations, even in seawater. Moreover, a facile recyclability with fast desorption kinetics can also be achieved for the MOF nanosheets. The excellent iodine removal performance in aqueous solution demonstrated that the electrostatic attraction between MOF nanosheets with a positive charge and the negatively charged triiodide (I3-, the dominant form of iodine in aqueous solution) is the driving force in adsorption, which endows the adsorbents with the characteristics of fast adsorption and desorption kinetics. The adsorption mechanism was systematically verified by the studies of ζ potential, Fourier transform infrared, X-ray photoelectron spectroscopy, and Raman spectra.


Subject(s)
Iodine , Metal-Organic Frameworks , Thyroid Neoplasms , Water Pollutants, Chemical , Adsorption , Humans , Iodides , Iodine Radioisotopes , Metal-Organic Frameworks/chemistry , Water , Water Pollutants, Chemical/analysis
19.
J Vet Res ; 66(2): 179-187, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35892111

ABSTRACT

Introduction: Clinical mastitis (CM) is one of the most common diseases of dairy cows globally, has a complex aetiology and recurs easily. Staphylococcus aureus is a frequently isolated pathogen responsible for bovine mastitis and remains difficult to eradicate. Material and Methods: To characterise the transcriptional profiles of dairy cows infected by S. aureus, we performed an RNA-seq analysis of peripheral blood leukocytes in lactating Chinese Holstein dairy cows with CM and did the same with healthy cows' samples as controls. Results: A total of 4,286 genes were detected in the CM cases infected with S. aureus which were differentially expressed compared to the controls, 3,085 of which were upregulated, the remainder being downregulated. Notably, we observed that some differentially expressed genes (DEGs) had strong protein-protein interaction. Of these, six downregulated DEGs (AKR1C4, PTGS2, HNMT, EPHX2, CMBL, and IDH1) were involved in the metabolic pathway, while eight upregulated DEGs (VWF, GP9, MYLK, GP6, F2RL3, ITGB3, GP5, and PRKG1) were associated with the platelet activation pathway. Conclusion: The transcriptome dataset of CM cases would be a valuable resource for clinical guidance on anti-inflammatory medication and for deeper understanding of the biological processes of CM response to S. aureus infection, and it would enable us to identify specific genes for diagnostic markers and possibly for targeted therapy.

20.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3581-3588, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850812

ABSTRACT

When the drug induces the organism to produce a type Ⅰ allergic reaction, the combination of IgE and mast cells results in the degranulation of the mast cells. Release of vasoactive substances, increase in vascular permeability, and exudation of intravascular substances outside the blood vessels. Based on this pathophysiological mechanism, a mouse model that can objectively and quantitatively assess the allergic response to the injection has been established. ICR mice were sensitised by intraperitoneal injection of different doses of OVA once every two days for three times. 14 days after the last sensitization, a combination OVA solution of 4 times the sensitizing dose and Evans blue were injected intravenously into mice for the challenge. Compared with the normal group, OVA 0.625/2.5, 1.25/5, 2.5/10, 5/20 mg·kg~(-1) sensitized and challenged can induce allergic reactions mainly manifested by blue staining of the auricle in mice. Direct injection of OVA intravenously did not cause an auricular blue colouration reaction in mice. The passive cutaneous anaphylaxis reaction in mice was conducted with the aforementioned OVA-sensitized mouse serum, and there were obvious blue spots on the mouse's back. In addition, the content of anti-OVA-IgE in 5 mg·kg~(-1) OVA-sensitized mice was significantly increased. Ears and lungs of mice sensitized to OVA showed evident exudation inflammation. Significantly elevated inflammatory factors(VEGF and IL-10) were also detected in the serum of OVA-sensitized mice. The equivalent dose of OVA caused obvious allergic reactions in both guinea pigs and mice. Compared with nude mice, ICR and BALB/c mice are more sensitive to OVA sensitization. Injections of selected TCMI did not induce type Ⅰ allergic reactions in mice and guinea pigs, but there was a risk of inducing pseu-doallergic reactions in mice. The model is problematic and may well reflect the sensitization effect of allergens. It obtains the benefits of simple operation, accuracy, low cost, easy extension, and high repeatability. It is suitable for predicting and researching for IgE-dependent type Ⅰ allergic reactions.


Subject(s)
Hypersensitivity , Immunoglobulin E , Allergens , Animals , Disease Models, Animal , Guinea Pigs , Medicine, Chinese Traditional , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Ovalbumin
SELECTION OF CITATIONS
SEARCH DETAIL
...