Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Language
Publication year range
1.
Protein & Cell ; (12): 935-943, 2010.
Article in English | WPRIM (Western Pacific) | ID: wpr-757684

ABSTRACT

Hearing impairment (HI) affects 1/1000 children and over 2% of the aged population. We have previously reported that mutations in the gene encoding gap junction protein connexin-31 (C×31) are associated with HI. The pathological mechanism of the disease mutations remains unknown. Here, we show that expression of C×31 in the mouse inner ear is developmentally regulated with a high level in adult inner hair cells and spiral ganglion neurons that are critical for the hearing process. In transfected cells, wild type C×31 protein (C×31wt) forms functional gap junction at cell-cell-contacts. In contrast, two HI-associated C×31 mutants, C×31R180X and C×31E183K resided primarily in the ER and Golgi-like intracellular punctate structures, respectively, and failed to mediate lucifer yellow transfer. Expression of C×31 mutants but not C×31wt leads to upregulation of and increased association with the ER chaperone BiP indicating ER stress induction. Together, the HI-associated C×31 mutants are impaired in trafficking, promote ER stress, and hence lose the ability to assemble functional gap junctions. The study reveals a potential pathological mechanism of HI-associated C×31 mutations.


Subject(s)
Animals , Mice , Connexins , Genetics , Ear, Inner , Metabolism , Endoplasmic Reticulum , Physiology , Gap Junctions , Genetics , Metabolism , Physiology , Golgi Apparatus , Genetics , Metabolism , Hearing Loss , Genetics , Metabolism , Pathology , Mutation , Neurons , Metabolism , Protein Transport , Genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...