Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 35(7): e21748, 2021 07.
Article in English | MEDLINE | ID: mdl-34152016

ABSTRACT

Although adipose-derived human mesenchymal stem cell (hADSC) transplantation has recently emerged as a promising therapeutic modality for Parkinson's disease (PD), its underlying mechanism of action has not been fully elucidated. This study evaluated the therapeutic effects of stereotaxic injection of hADSCs in the striatum of the 6-OHDA-induced mouse model. Furthermore, an in vitro PD model was constructed using tissue-organized brain slices. The therapeutic effect was also evaluated using a co-culture of the hADSCs and 6-OHDA-treated brain slice. The analysis of hADSC exocrine proteins using RNA-sequencing, human protein cytokine arrays, and label-free quantitative proteomics identified key extracellular factors in the hADSC secretion environment. The degeneration and apoptosis of the dopaminergic neurons were measured in the PD samples in vivo and in vitro, and the beneficial effects were evaluated using quantitative reverse transcription-polymerase chain reaction, western blotting, Fluoro-Jade C, TUNEL assay, and immunofluorescence analysis. This study found that hADSCs protected the dopaminergic neurons in the in vivo and vitro models. We identified Pentraxin 3 (PTX3) as a key extracellular factor in the hADSC secretion environment. Moreover, we found that human recombinant PTX3 (rhPTX3) treatment could rescue the pathophysiological behavior of the PD mice in vivo, prevent dopaminergic neuronal death, and increase neuronal terminals in the ventral tegmental area + substantia nigra pars compacta and striatum in the PD brain slices in vitro. Furthermore, testing of the pro-apoptotic markers in the PD mouse brain following rhPTX3 treatment revealed that rhPTX3 can prevent apoptosis and degeneration of the dopaminergic neurons. This study discovered that PTX3, a hADSC-secreted protein, potentially protected the dopaminergic neurons against apoptosis and degeneration during PD progression and improved motor performance in PD mice, indicating the possible mechanism of action of hADSC replacement therapy for PD. Thus, our study discovered potential translational implications for the development of PTX3-based therapeutics for PD.


Subject(s)
Adipose Tissue/metabolism , Apoptosis/physiology , C-Reactive Protein/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mesenchymal Stem Cells/metabolism , Parkinson Disease/metabolism , Serum Amyloid P-Component/metabolism , Animals , Cell Death/physiology , Cells, Cultured , Corpus Striatum/metabolism , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL
2.
Cell Death Dis ; 11(5): 384, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439916

ABSTRACT

Temozolomide (TMZ) resistance is a major cause of recurrence and poor prognosis in glioblastoma (GBM). Recently, increasing evidences suggested that long noncoding RNAs (LncRNAs) modulate GBM biological processes, especially in resistance to chemotherapy, but their role in TMZ chemoresistance has not been fully illuminated. Here, we found that LncRNA SOX2OT was increased in TMZ-resistant cells and recurrent GBM patient samples, and abnormal expression was correlated with high risk of relapse and poor prognosis. Knockdown of SOX2OT suppressed cell proliferation, facilitated cell apoptosis, and enhanced TMZ sensitivity. In addition, we identified that SOX2OT regulated TMZ sensitivity by increasing SOX2 expression and further activating the Wnt5a/ß-catenin signaling pathway in vitro and in vivo. Mechanistically, further investigation revealed that SOX2OT recruited ALKBH5, which binds with SOX2, demethylating the SOX2 transcript, leading to enhanced SOX2 expression. Together, these results demonstrated that LncRNA SOX2OT inhibited cell apoptosis, promoted cell proliferation, and TMZ resistance by upregulating SOX2 expression, which activated the Wnt5a/ß-catenin signaling pathway. Our findings indicate that LncRNA SOX2OT may serve as a novel biomarker for GBM prognosis and act as a therapeutic target for TMZ treatment.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma , RNA, Long Noncoding/genetics , Temozolomide/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Epigenesis, Genetic/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , RNA, Long Noncoding/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...