Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735943

ABSTRACT

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Subject(s)
Glucose , Mesenchymal Stem Cells , Mitochondria , NAD , Osteogenesis , Sirtuin 1 , Mesenchymal Stem Cells/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Osteogenesis/physiology , Mice , Humans , Animals , Mitochondria/metabolism , Glucose/metabolism , NAD/metabolism , Cell Differentiation
2.
Ann Emerg Med ; 83(5): 492-493, 2024 May.
Article in English | MEDLINE | ID: mdl-38642974
3.
J Exp Clin Cancer Res ; 41(1): 137, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35410237

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic neoplasm with high metastatic potential and poor clinical outcome. Like other solid tumors, PDAC in the early stages is often asymptomatic, and grows very slowly under a distinct acidic pHe (extracellular pH) microenvironment. However, most previous studies have only reported the fate of cancerous cells upon cursory exposure to acidic pHe conditions. Little is known about how solid tumors-such as the lethal PDAC originating within the pancreatic duct-acinar system that secretes alkaline fluids-evolve to withstand and adapt to the prolonged acidotic microenvironmental stress. METHODS: Representative PDAC cells were exposed to various biologically relevant periods of extracellular acidity. The time effects of acidic pHe stress were determined with respect to tumor cell proliferation, phenotypic regulation, autophagic control, metabolic plasticity, mitochondrial network dynamics, and metastatic potentials. RESULTS: Unlike previous short-term analyses, we found that the acidosis-mediated autophagy occurred mainly as an early stress response but not for later adaptation to microenvironmental acidification. Rather, PDAC cells use a distinct and lengthy process of reversible adaptive plasticity centered on the early fast and later slow mitochondrial network dynamics and metabolic adjustment. This regulates their acute responses and chronic adaptations to the acidic pHe microenvironment. A more malignant state with increased migratory and invasive potentials in long-term acidosis-adapted PDAC cells was obtained with key regulatory molecules being closely related to overall patient survival. Finally, the identification of 34 acidic pHe-related genes could be potential targets for the development of diagnosis and treatment against PDAC. CONCLUSIONS: Our study offers a novel mechanism of early rapid response and late reversible adaptation of PDAC cells to the stress of extracellular acidosis. The presence of this distinctive yet slow mode of machinery fills an important knowledge gap in how solid tumor cells sense, respond, reprogram, and ultimately adapt to the persistent microenvironmental acidification.


Subject(s)
Acidosis , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adaptation, Physiological , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Hydrogen-Ion Concentration , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Tumor Microenvironment/genetics , Pancreatic Neoplasms
4.
Chemistry ; 28(17): e202104178, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35143090

ABSTRACT

The excellent molecular recognition capabilities of monoclonal antibodies (mAbs) have opened up exciting opportunities for biotherapeutic discovery. Taking advantage of the full potential of this tool necessitates affinity ligands capable of conjugating directly with small molecules to a defined degree of biorthogonality, especially when modifying natural Abs. Herein, a bioorthogonal boronate-affinity-based Ab ligand featuring a 4-(dimethylamino)pyridine and an S-aryl thioester to label full-length Abs is reported. The photoactivatable linker in the acyl donor facilitated purification of azide-labelled Ab (N3 -Ab) was quantitatively cleaved upon brief exposure to UV light while retaining the original Ab activity. Click reactions enabled the precise addition of biotin, a fluorophore, and a pharmacological agent to the purified N3 -Abs. The resulting immunoconjugate showed selectivity against targeted cells. Bioorthogonal traceless design and reagentless purification allow this strategy to be a powerful tool to engineer native antibodies amenable to therapeutic intervention.


Subject(s)
Immunoconjugates , Acylation , Antibodies, Monoclonal , Azides , Fluorescent Dyes
5.
Ann Surg Oncol ; 20(1): 193-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22555346

ABSTRACT

BACKGROUND: WWOX has been shown to be a candidate tumor suppressor gene in numerous human cancers. The objective of this study is to determine the expression of WWOX in human renal cell carcinoma tumor cells and its possible correlation with clinical outcome. METHODS: The WWOX protein expressions of human renal cell carcinoma (RCC) tumor and of matched normal renal parenchyma were examined, and its correlation with clinical cancer-specific survival was investigated. RESULTS: Downregulation of WWOX only in clear cell type RCC was demonstrated in our results including immunohistochemistry, Western blot, and RT-PCR assay. For the remnant cell types of RCC, sample sizes were insufficient to draw any conclusion of WWOX protein expression. The decreased expression of WWOX in clear cell RCC tumor compared with matched normal renal parenchyma was also correlated with clinical cancer-specific survival (Kaplan-Meier, p=0.0482). CONCLUSIONS: We proved that the expression level of WWOX is downregulated in human clear cell RCC. Moreover, the decreased expression of WWOX in clear cell RCC tumor compared with matched normal renal parenchyma was also correlated with clinical cancer-specific survival. Since clear cell RCC is a special human cancer using unique molecular pathogenesis, further investigation will provide more linking intracellular signaling of WWOX and novel therapeutic targets of human renal cell carcinoma.


Subject(s)
Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Oxidoreductases/metabolism , Tumor Suppressor Proteins/metabolism , Aged , Carcinoma, Renal Cell/genetics , Down-Regulation , Female , Humans , Kaplan-Meier Estimate , Kidney/metabolism , Kidney Neoplasms/genetics , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Oxidoreductases/genetics , Prognosis , Tumor Suppressor Proteins/genetics , WW Domain-Containing Oxidoreductase
SELECTION OF CITATIONS
SEARCH DETAIL
...