Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 8(10): 4835-43, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19673540

ABSTRACT

NO-mediated S-nitrosation of cysteine residues has been recognized as a fundamental post-translational modification. S-Nitrosation of endothelial cell (EC) proteins can alter function and affect vascular homeostasis. Trace amounts of S-nitrosoproteins in endothelial cells (ECs) in vivo coupled with lability of the S-nitroso bond have hindered a comprehensive characterization. We demonstrate a convenient and reliable method, requiring minimal sample, for the screening and identification of S-nitrosoproteins. ECs treated with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) were subjected to the biotin switch method of labeling, then detected by analytical Western blot-based two-dimensional gel electrophoresis (2-DE). More than 89 SNAP-increased S-nitrosoproteins were detected and 28 of these were successfully excised from preparative 2-DE gel and identified by LC-MS/MS. Moreover, the nitrosocysteine residue for each protein (HSPA9/368, beta-actin/16, TMP3/170, vimentin/328) was also determined, and the relative ratio of S-nitrosation/non-S-nitrosation for Cys328 of vimentin was estimated using MASIC software. By the combination of the biotin switch method with 2-DE and Western blot analysis, S-nitrosoproteins can be screened and characterized by MS, providing a basis for further study of the physiological significance of each S-nitrosoproteins.


Subject(s)
Biotin/metabolism , Blotting, Western/methods , Electrophoresis, Gel, Two-Dimensional/methods , Endothelial Cells/metabolism , Proteins/metabolism , S-Nitrosothiols/metabolism , Avidin/metabolism , Cell Line , Humans , Mass Spectrometry , Nitric Oxide/metabolism , Nitrosation , Peptide Fragments/analysis , Proteins/chemistry , Reproducibility of Results , S-Nitrosothiols/chemistry
2.
J Proteome Res ; 7(3): 1055-66, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18281928

ABSTRACT

Recent biochemical and genetic approaches have clearly defined the functional role of critical components in tyrosine phosphorylation-dependent signal transduction. These signaling modulators often exhibit evolutionarily conserved functions across various species. It has been proposed that if protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and thousands of their substrates could be identified and characterized, it would significantly advance our understanding of the underlying mechanisms that control animal development and physiological homeostasis. The fruit fly Drosophila melanogester has been used extensively as a model organism for investigating the developmental processes, but the state of its tyrosine phosphorylation is poorly characterized. In the current study, we used advanced mass spectrometry (MS)-based shotgun analyses to profile the tyrosine phosphoproteome of Drosophila S2 cells. Using immunoaffinity isolation of the phosphotyrosine (pTyr) subproteome from cells treated with pervanadate followed by enrichment of phosphopeptides, we identified 562 nonredundant pTyr sites in 245 proteins. Both this predefined pTyr proteome subset and the total cell lysates were then used as sample sources to identify potential substrates of dPTP61F, the smallest member in terms of amino acid number and molecular weight in the Drosophila PTP family and the ortholog of human PTP1B and T Cell-PTP, by substrate trapping. In total, 20 unique proteins were found to be specifically associated with the trapping mutant form of dPTP61F, eluted by vanadate (VO4(3-)), and identified by MS analyses. Among them, 16 potential substrates were confirmed as tyrosine phosphorylated proteins, including a receptor PTK PDGF/VEGF receptor, a cytosolic PTK Abl, and several components of SCAR/WAVE complex, which may work in coordination to control actin dynamics. Thus, our data suggest that dPTP61F plays a central role in counteracting PTK-mediated signaling pathways as well as in regulating actin reorganization and remodeling through tyrosine dephosphorylation of critical substrates in Drosophila cells.


Subject(s)
Mass Spectrometry/methods , Phosphoproteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Proteomics , Amino Acid Sequence , Animals , Drosophila , Molecular Sequence Data , Phosphoproteins/chemistry , Phosphorylation , Protein Tyrosine Phosphatases/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...