Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Talanta ; 277: 126339, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823321

ABSTRACT

Bisphenols and benzophenones are two typical kinds of endocrine-disrupting compounds (EDCs) that have been extensively detected in water environments, posing unanticipated risks to aquatic organisms and humans. It is urgent to develop efficient sample pretreatment methods for precise measurement of such EDCs. In this study, a magnetic and multi-shelled metal-organic framework derivative material has been prepared to extract and enrich trace bisphenols and benzophenones from water. Via a solvothermal reaction induced by sodium citrate followed by a carbonization treatment, a ZIF-67@ZIF-8 derived CoZn-magnetic hierarchical carbon (CoZn-MHC) material has been synthesized as a high-performance magnetic solid-phase extraction (MSPE) adsorbent. This adsorbent exhibited a good specific surface area (213.80 m2⋅g-1) and a saturation magnetization of 63.2 emu·g-1. After the optimization of several parameters (including adsorbent dosage, extraction time, pH, ionic strength, desorption solvent, and solvent volume), an efficient MSPE method for several EDCs (comprising bisphenols and benzophenones) was developed with a good linear range (R2 ≥ 0.990), a high sensitivity range (LODs: 0.793-5.37 ng⋅L-1), and good reusability (RSD ≤4.67 % in five consecutive tests). Furthermore, the material exhibited commendable resistance to matrix interference in natural water samples with the recovery rates of target compounds ranging from 74.8 % to 107 %. We envision that the preparation strategy of this functional metal-organic framework (MOF)-based adsorbent for EDCs may provide insights for relevant research in the future.

2.
Environ Sci Technol ; 58(19): 8117-8134, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701366

ABSTRACT

Due to its widespread applications in various fields, antibiotics are continuously released into the environment and ultimately enter the human body through diverse routes. Meanwhile, the unreasonable use of antibiotics can also lead to a series of adverse outcomes. Pregnant women and developing fetuses are more susceptible to the influence of external chemicals than adults. The evaluation of antibiotic exposure levels through questionnaire surveys or prescriptions in medical records and biomonitoring-based data shows that antibiotics are frequently prescribed and used by pregnant women around the world. Antibiotics may be transmitted from mothers to their offspring through different pathways, which then adversely affect the health of offspring. However, there has been no comprehensive review on antibiotic exposure and mother-to-child transmission in pregnant women so far. Herein, we summarized the exposure levels of antibiotics in pregnant women and fetuses, the exposure routes of antibiotics to pregnant women, and related influencing factors. In addition, we scrutinized the potential mechanisms and factors influencing the transfer of antibiotics from mother to fetus through placental transmission, and explored the adverse effects of maternal antibiotic exposure on fetal growth and development, neonatal gut microbiota, and subsequent childhood health. Given the widespread use of antibiotics and the health threats posed by their exposure, it is necessary to comprehensively track antibiotics in pregnant women and fetuses in the future, and more in-depth biological studies are needed to reveal and verify the mechanisms of mother-to-child transmission, which is crucial for accurately quantifying and evaluating fetal health status.


Subject(s)
Anti-Bacterial Agents , Maternal Exposure , Humans , Female , Pregnancy , Maternal-Fetal Exchange , Fetus/drug effects
3.
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714222

ABSTRACT

Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.


Subject(s)
Air Pollution, Indoor , Dust , Phthalic Acids , Dust/analysis , China , Phthalic Acids/analysis , Humans , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Air Pollutants/analysis , Esters/analysis , Environmental Monitoring
4.
J Hazard Mater ; 469: 134054, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503214

ABSTRACT

Pollution of micro/nano-plastics (MPs/NPs) is ubiquitously prevalent in the environment, leading to an unavoidable exposure of the human body. Despite the protection of the blood-brain barrier, MPs/NPs can be transferred and accumulated in the brain, which subsequently exert negative effects on the brain. Nevertheless, the potential neurodevelopmental and/or neurodegenerative risks of MPs/NPs remain largely unexplored. In this review, we provide a systematic overview of recent studies related to the neurotoxicity of MPs/NPs. It covers the environmental hazards and human exposure pathways, translocation and distribution into the brain, the neurotoxic effects, and the possible mechanisms of environmental MPs/NPs. MPs/NPs are widely found in different environment matrices, including air, water, soil, and human food. Ambient MPs/NPs can enter the human body by ingestion, inhalation and dermal contact, then be transferred into the brain via the blood circulation and nerve pathways. When MPs/NPs are present in the brain, they can initiate a series of molecular or cellular reactions that may harm the blood-brain barrier, cause oxidative stress, trigger inflammatory responses, affect acetylcholinesterase activity, lead to mitochondrial dysfunction, and impair autophagy. This can result in abnormal protein folding, loss of neurons, disruptions in neurotransmitters, and unusual behaviours, ultimately contributing to the initiation and progression of neurodegenerative changes and neurodevelopmental abnormalities. Key challenges and further research directions are also proposed in this review as more studies are needed to focus on the potential neurotoxicity of MPs/NPs under realistic conditions.


Subject(s)
Neurotoxicity Syndromes , Water Pollutants, Chemical , Humans , Microplastics , Acetylcholinesterase , Neurotoxicity Syndromes/etiology , Brain , Blood-Brain Barrier , Plastics
5.
Sci Total Environ ; 927: 171972, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554970

ABSTRACT

Mounting evidence suggests that environmental pollutants may affect reproductive health, potentially leading to adverse outcomes like pregnancy loss. However, it remains unclear whether exposure to synthetic phenolic antioxidants (SPAs) correlates with early pregnancy loss (EPL). This study explores SPA exposure's link to EPL and its potential molecular mechanisms. From 2021 to 2022, 265 early pregnant women (136 serum and 129 villus samples) with and without EPL were enrolled. We quantified 17 SPAs in serum and chorionic villus, with AO1010, AO3114, BHT, AO2246, and BHT-Q frequently being detected, suggesting their ability to cross the placental barrier. AO1135 showed a positive relationship with EPL in sera, indicating a significant monotonic dose-response relationship (p-trend <0.001). BHT-Q exhibited a similar relationship with EPL in villi. Inhibitory effects of BHT-Q on estradiol (E2) were observed. Molecular docking revealed SPA-protein interactions involved in E2 synthesis. SPA-induced EPL might occur with specific serum levels of AO1135 and certain villus levels of AO1010, BHT-Q, and AO2246. BHT-Q emerges as a potential biomarker for assessing EPL risk. This study provides insights into understanding of the exposure to SPAs and potential adverse outcomes in pregnant women.


Subject(s)
Abortion, Spontaneous , Antioxidants , Phenols , Female , Humans , Pregnancy , Abortion, Spontaneous/chemically induced , Adult , Molecular Docking Simulation , Environmental Pollutants
6.
Environ Sci Technol ; 58(8): 3726-3736, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353258

ABSTRACT

Mono(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites.


Subject(s)
Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Phthalic Acids , Humans , Pregnancy , Male , Female , Animals , Rats , Rats, Sprague-Dawley , Thyroid Hormones , Phthalic Acids/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Lactation , Homeostasis , Growth and Development
7.
Sci Total Environ ; 894: 164928, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37348711

ABSTRACT

To fulfill the growing demand for retarding the oxidation of polymers and minimizing their migration from various products, new macromolecular synthetic phenolic antioxidants (SPAs) have emerged in the market. There is a concern that these SPAs may be released into wastewater streams during their manufacturing and use, eventually ending up in wastewater treatment plants (WWTPs). Nevertheless, information regarding the occurrence of these SPAs in sludge, particularly on a national scale, is scarce. In this study, several macromolecular SPAs and their transformation products (TPs) were investigated in sludge samples from 45 Chinese municipal WWTPs. All 14 analytes were detected in the sludge samples, among which, 12 analytes were first reported in sludge. 2,4,6-tri-tert-butylphenol (AO246) and 2 macromolecular SPAs, pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (AO1010) and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (AO1076), were the most dominant SPAs, with geometric mean (GM) concentrations of 547, 212, and 35.2 ng/g dw, respectively. Two TPs, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoic acid (fenozan) and 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHT-COOH), were found in some sludge samples (48.9-71.1 %) with GM of 45.5 and 12.8 ng/g dw, respectively. By using LC-Q-TOF-MS/MS analysis, we tentatively identified previously unknown TPs of 10 macromolecular SPAs in sludge. This suggests that there are still unclear mechanisms modulating the transformation of these SPAs, which underscores the complexity of their fate. Additionally, using the freshwater photobacteria Vibrio qinghaiensis sp.-Q67 (Q67) as model organism, the acute and chronic EC50 of the 14 analytes were assessed for ecological risk assessment. By considering toxicity data obtained from algae, daphnia, and fish collected or predicted from various databases, we found that these analytes, including their mixture at low detected concentrations, pose risks to aquatic systems that should not be disregarded. Overall, the current study provides a comprehensive overview of novel SPAs and their TPs in sludge, offering valuable insights for investigating their environmental behavior, fate, and risks.


Subject(s)
Antioxidants , Sewage , Antioxidants/analysis , Sewage/analysis , Butylated Hydroxytoluene/analysis , Propionates , Tandem Mass Spectrometry , Phenols/analysis , China
8.
Inflamm Res ; 72(7): 1485-1500, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37335321

ABSTRACT

OBJECTIVE: Fungal keratitis is a severe sight-threatening ocular infection, without effective treatment strategies available now. Calprotectin S100A8/A9 has recently attracted great attention as a critical alarmin modulating the innate immune response against microbial challenges. However, the unique role of S100A8/A9 in fungal keratitis is poorly understood. METHODS: Experimental fungal keratitis was established in wild-type and gene knockout (TLR4-/- and GSDMD-/-) mice by infecting mouse corneas with Candida albicans. The degree of mouse cornea injuries was evaluated by clinical scoring. To interrogate the molecular mechanism in vitro, macrophage RAW264.7 cell line was challenged with Candida albicans or recombinant S100A8/A9 protein. Label-free quantitative proteomics, quantitative real-time PCR, Western blotting, and immunohistochemistry were conducted in this research. RESULTS: Herein, we characterized the proteome of mouse corneas infected with Candida albicans and found that S100A8/A9 was robustly expressed at the early stage of the disease. S100A8/A9 significantly enhanced disease progression by promoting NLRP3 inflammasome activation and Caspase-1 maturation, accompanied by increased accumulation of macrophages in infected corneas. In response to Candida albicans infection, toll-like receptor 4 (TLR4) sensed extracellular S100A8/A9 and acted as a bridge between S100A8/A9 and NLRP3 inflammasome activation in mouse corneas. Furthermore, the deletion of TLR4 resulted in noticeable improvement in fungal keratitis. Remarkably, NLRP3/GSDMD-mediated macrophage pyroptosis in turn facilitates S100A8/A9 secretion during Candida albicans keratitis, thus forming a positive feedback cycle that amplifies the proinflammatory response in corneas. CONCLUSIONS: The present study is the first to reveal the critical roles of the alarmin S100A8/A9 in the immunopathology of Candida albicans keratitis, highlighting a promising approach for therapeutic intervention in the future.


Subject(s)
Candida albicans , Keratitis , Mice , Animals , Candida albicans/metabolism , Inflammasomes/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alarmins , Feedback , Keratitis/genetics , Keratitis/microbiology , Immunity, Innate , Calgranulin A/genetics
9.
Environ Sci Technol ; 57(22): 8189-8212, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37196176

ABSTRACT

The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.


Subject(s)
Environmental Pollutants , Phthalic Acids , Pregnancy , Child , Female , Humans , Environmental Exposure/analysis , Body Burden , Reproductive Health , Follicular Atresia , Phthalic Acids/analysis , Environmental Pollutants/toxicity , Plasticizers
10.
J Mater Chem B ; 11(19): 4365, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37144337

ABSTRACT

Correction for 'Bio-related applications of porous organic frameworks (POFs)' by He Zhang et al., J. Mater. Chem. B, 2019, 7, 2398-2420, https://doi.org/10.1039/C8TB03192D.

11.
Environ Sci Technol ; 57(18): 7109-7128, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37079500

ABSTRACT

Organophosphate flame retardants (OPFRs) are found in various environmental matrixes and human samples. Exposure to OPFRs during gestation may interfere with pregnancy, for example, inducing maternal oxidative stress and maternal hypertension during pregnancy, interfering maternal and fetal thyroid hormone secretion and fetal neurodevelopment, and causing fetal metabolic abnormalities. However, the consequences of OPFR exposure on pregnant women, impact on mother-to-child transmission of OPFRs, and harmful effects on fetal and pregnancy outcomes have not been evaluated. This review describes the exposure to OPFRs in pregnant women worldwide, based on metabolites of OPFRs (mOPs) in urine for prenatal exposure and OPFRs in breast milk for postnatal exposure. Predictors of maternal exposure to OPFRs and variability of mOPs in urine have been discussed. Mother-to-child transmission pathways of OPFRs have been scrutinized, considering the levels of OPFRs and their metabolites in amniotic fluid, placenta, deciduae, chorionic villi, and cord blood. The results showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP) were the two predominant mOPs in urine, with detection frequencies of >90%. The estimated daily intake (EDIM) indicates low risk when infants are exposed to OPFRs from breast milk. Furthermore, higher exposure levels of OPFRs in pregnant women may increase the risk of adverse pregnancy outcomes and influence the developmental behavior of infants. This review summarizes the knowledge gaps of OPFRs in pregnant women and highlights the crucial steps for assessing health risks in susceptible populations, such as pregnant women and fetuses.


Subject(s)
Flame Retardants , Organophosphates , Infant , Humans , Female , Pregnancy , Pregnant Women , Pregnancy Outcome/epidemiology , Infectious Disease Transmission, Vertical , Phosphates
12.
Environ Sci Technol ; 57(13): 5380-5390, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36942846

ABSTRACT

As a group of new nanomaterials, nanoscale metal-organic frameworks (MOFs) are widely applied in the biomedical field, exerting unknown risks to the human body, especially the central nervous system. Herein, the impacts of MOF-74-Zn nanoparticles on neurological behaviors and neurotransmitter metabolism are explored in both in vivo and in vitro assays modeled by C57BL/6 mice and PC12 cells, respectively. The mice exhibit increased negative-like behaviors, as demonstrated by the observed decrease in exploring behaviors and increase in despair-like behaviors in the open field test and forced swimming test after exposure to low doses of MOF-74-Zn nanoparticles. Disorders in the catecholamine neurotransmitter metabolism may be responsible for the MOF-74-Zn-induced abnormal behaviors. Part of the reason for this is the inhibition of neurotransmitter synthesis caused by restrained neurite extension. In addition, MOF-74-Zn promotes the translocation of more calcium into the cytoplasm, accelerating the release and uptake and finally resulting in an imbalance between synthesis and catabolism. Taken together, the results from this study indicate the human toxicity risks of nanoscale low-toxicity metal-based MOFs and provide valuable insight into the rational and safe use of MOF nanomaterials.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Rats , Animals , Mice , Humans , Catecholamines , Zinc/toxicity , Mice, Inbred C57BL
13.
Environ Sci Technol ; 57(14): 5739-5750, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36989422

ABSTRACT

We have been effectively protected by disposable propylene face masks during the COVID-19 pandemic; however, they may pose health risks due to the release of fine particles and chemicals. We measured micro/nanoparticles and organic chemicals in disposable medical masks, surgical masks, and (K)N95 respirators. In the breathing-simulation experiment, no notable differences were found in the total number of particles among mask types or between breathing intensities. However, when considering subranges, <2.5 µm particles accounted for ∼90% of the total number of micro/nanoparticles. GC-HRMS-based suspect screening tentatively revealed 79 (semi)volatile organic compounds in masks, with 18 being detected in ≥80% of samples and 44 in ≤20% of samples. Three synthetic phenolic antioxidants were quantified, and AO168 reached a median concentration of 2968 ng/g. By screening particles collected from bulk mask fabrics, we detected 18 chemicals, including four commonly detected in masks, suggesting chemical partition between the particles and the fabric fibers and chemical exposure via particle inhalation. These particles and chemicals are believed to originate from raw materials, intentionally and nonintentionally added substances in mask production, and their transformation products. This study highlights the need to study the long-term health risks associated with mask wearing and raises concerns over mask quality control.


Subject(s)
COVID-19 , Nanoparticles , Humans , COVID-19/prevention & control , Masks , Polypropylenes , Pandemics/prevention & control
15.
Sci Total Environ ; 870: 161844, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36716867

ABSTRACT

The aim of this study is to investigate the exposure of novel high-molecular-weight (HMW) synthetic antioxidants (AOs), including nine synthetic phenolic antioxidants (SPAs), one low-molecular-weight (LMW) SPA, two organophosphite antioxidants (OPAs) as well as one transformation product in children's urine from eastern (n = 82) and western (n = 105) China. For the first time, all analytes were detected in children's urine such as the representative HMW SPAs pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (AO1010, median = 0.447 ng/mL), octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (AO1076, median = 0.0300 ng/mL), and 1,3,5-tris[(3,5-di-tert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinane-2,4,6-trione(1,2-dioxoethylene)bis(iminoethylene) (AO3114, median = 0.0166 ng/mL) and representative OPAs bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite (AO626, median = 0.00216 ng/mL), tris(2,4-di-tert-butylphenyl) phosphite (AO168, median = 0.0296 ng/mL) as well as its transformation product tris(2,4-di-tert-butylphenyl) phosphate (AO168O, median = 1.53 ng/mL). Significant differences were observed in the concentrations of AO1010, AO3114, AO168, and AO168O between urine samples from eastern and western China (p < 0.01). The high-frequency combination of AOs from binary to a mixture of six AOs was acquired, which would provide a better investigation of the mixture toxicity. The high estimated daily intakes of AO1010 (85.4 ng/kg/day), AO1076 (10.2 ng/kg/day), AO3114 (4.50 ng/kg/day), and AO168 (1231 ng/kg/day) were less than the values of the tolerable daily intake (3,020,000, 1,500,000, 10,000,000, and 580,000 ng/kg/day for AO1010, AO1076, AO3114, and AO168, respectively), indicating low health risk to children. Our findings showed the co-occurrence of those novel AOs and transformation products in children, the overall risks associated with the mixture of transformation products and the mixture with other emerging pollutants need to be considered when assessing the risks of AOs in further studies.


Subject(s)
Antioxidants , Propionates , Child , Humans , Phenols/analysis , China
16.
J Hazard Mater ; 441: 129907, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36099735

ABSTRACT

Chlorinated paraffins (CPs) are typical semi-volatile chemicals (SVOCs) that have been used in copious quantities in indoor material additives. SVOCs distribute dynamically between the gas phase and various condensate phases, especially organic films. Investigating the dynamic behaviors of existing CPs in indoor environments is necessary for understanding their potential risk to humans from indoor exposure. We investigate the distribution profiles of CPs in both gas phase and organic films in indoor environments of residential buildings in Beijing, China. The concentrations of CPs were in the range of 32.21-1447 ng/m3 in indoor air and in the range of 42.30-431.1 µg/m2 and in organic films. Cooking frequency was identified as a key factor that affected the distribution profiles of CPs. Furthermore, a film/gas partitioning model was constructed to explore the transportation and fate of CPs. Interestingly, a re-emission phenomenon from organic films was observed for chemical groups with lower log Koa components, and, importantly, their residue levels in indoor air were well predicted. The estimated exposure risk of CPs in indoor environment was obtained. For the first time, these results produced convincing evidence that the co-exposure risk of short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in indoor air could be further increased by film/gas distribution properties, which is relevant for performing risk assessments of exposure to these SVOCs in indoor environments.


Subject(s)
Air Pollution, Indoor , Hydrocarbons, Chlorinated , Air Pollution, Indoor/analysis , Beijing , China , Environmental Monitoring/methods , Humans , Hydrocarbons, Chlorinated/analysis , Paraffin/chemistry
17.
Environ Sci Technol ; 56(23): 16789-16800, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36354080

ABSTRACT

Direct emissions from fluorochemical manufactory are an important source of per- and polyfluoroalkyl substances (PFASs) to the environment. In this study, a wide range of PFASs, including 8 legacy PFASs, 8 long-chain perfluoroalkyl carboxylic acids (PFCAs), and 40 emerging PFASs, were investigated through a target screening in multienvironmental matrices from a fluorochemical manufactory in China. Indoor dust was the most polluted matrix, wherein 52 PFASs were detected, and the median concentration of long-chain PFCA was 276 ng/g. A high level of short-chain PFAS in total suspended particles (median concentration = 416 ng/m3) and the effluent in the manufactory (Σ48PFAS = 212 µg/L) will undoubtedly increase the burden on the surrounding environment. Twenty-four industrial byproducts were ascertained to be generated during the electrochemical fluorination (ECF) process, and eight fluorinated alternatives were considered to be produced during product development. Twelve PFASs were quantified for the first time in the working environments. Perfluoropropane sulfonic acid, perfluoro (2-ethoxyethane) sulfonic acid (PFEESA), and 2-perfluorohexyl ethanoic acid are abundant fluorinated alternatives, with median levels of 1187-17204 ng/g in the dust. Significant positive correlations between ECF-related PFAS products and byproducts indicate that the detected values are strongly connected with the industrial source. Hierarchical cluster analysis further manifests their affiliation. Our findings raise the need for further investigations of emerging PFAS (including the first report of PFAS, such as PFEESA, in the environment) which may be released during the production process in the fluorochemical manufactories.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Environmental Monitoring , Carboxylic Acids/analysis , Dust/analysis , Sulfonic Acids/analysis , China , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/analysis
18.
Environ Sci Technol ; 56(18): 12852-12862, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35930321

ABSTRACT

The marine environment is regarded as a crucial "sink" of numerous land-origin pollutants. As typical boundary regions, the coastal and offshore areas are used to evaluate the dominating transfer process and land-ocean exchange mechanism of semivolatile organic compounds. In air samples collected from a coastal area in North China over a whole year, chlorinated paraffins (CPs), including short-chain CPs and medium-chain CPs, and prior control 16 polycyclic aromatic hydrocarbons (PAHs) were determined, with mean concentrations of 25.8 and 94.7 ng/m3, respectively. Results of different gas-particle partitioning models indicated that the steady-state hypothesis provides a better description of the possible land-ocean exchange molecular mechanism. The source-sink influences for CPs and PAHs were affected by the predominant atmospheric motion, which alternated between gaseous diffusion and particulate sedimentation in different seasons. Source apportionment results indicated that different transfer characteristics contributed to the source divergence of ambient CPs and PAHs within 12 nautical miles in the same area. Coal/biomass combustion and diesel/natural gas combustion were the main PAH sources in the coast site (43.1%) and sea site (35.3%), respectively. Similar industrial sources CP-52 and CP-42 were the main CP sources in the coast site (41.4%) and sea site (40.8%), respectively.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , China , Coal , Environmental Monitoring/methods , Gases , Natural Gas , Oceans and Seas , Paraffin , Polycyclic Aromatic Hydrocarbons/analysis , Seasons
19.
Life Sci ; 307: 120881, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35963303

ABSTRACT

Fungal keratitis is one of the leading causes of blindness worldwide, which has become an increasingly serious threat to public ocular health, but no effective treatment strategies are available now. Pattern recognition receptors (PRRs) of the innate immune system are the first line of host defense against fungal infections. They could recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and trigger an array of inflammatory responses. Over the last decades, research has resulted in significant progress regarding the roles of PRRs in fungal keratitis. This review will highlight the importance of several pattern recognition receptors (C-type lectin-like receptors, Toll-like receptors, and NOD-like receptors) in regulating the innate immunity under fungal keratitis and describe the crosstalk and collaboration in PRRs contributing to disease pathology. Meanwhile, some potential therapy-based PRRs against corneal fungal infections are discussed.


Subject(s)
Keratitis , Mycoses , Humans , Immunity, Innate , Keratitis/microbiology , Lectins, C-Type , NLR Proteins , Pathogen-Associated Molecular Pattern Molecules , Receptors, Pattern Recognition , Toll-Like Receptors
20.
J Agric Food Chem ; 70(28): 8609-8618, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35793444

ABSTRACT

With increasing application of organophosphate esters (OPEs) as flame retardants and plasticizers in the world, the health and ecological risks posed by these chemicals have raised people's concern over the years. Despite the fact that dietary intake is an important pathway for human exposure to OPEs, monitoring on OPEs in foodstuffs is scarce. In this study, we measured 14 OPEs in both packaged (n = 229) and fresh (n = 58) foodstuffs collected across China with a new method that was developed by two-stage solid-phase extraction. The total concentrations of OPEs (ΣOPEs) in 12 categories of packaged foodstuffs and 5 categories of fresh foodstuffs were in the range of 0.212-273 ng/g wet weight (ww) [geometric mean (GM): 5.06 ng/g ww] and 0.189-2.82 ng/g ww (GM: 0.618 ng/g ww), respectively. Significantly higher levels of ΣOPEs were found in packaged food categories of fruits and meat than those in the corresponding fresh ones, implying the extra introduction of OPEs during the processing and storage of foodstuffs. Correlation analysis showed that the GM concentrations of individual OPEs in animal-derived foods with few industrial processing were positively correlated with their annual production volumes in China in 2020, emphasizing the significance of natural sources of OPEs in these food samples. Elevated levels of ΣOPEs (range: 8.94-4120 and GM: 274 ng/g) were found in food-packaging materials, and the predominant OPE analogues were consistent with those found in packaged food samples. The result implies that the food-packaging material can be an important contamination source of OPEs in packaged foodstuffs, which is in particular true for triphenyl phosphate, tris(2-chloroisopropyl) phosphate, tris(2-chloroethyl) phosphate, and 2-ethylhexyl diphenyl phosphate. The median daily intake of ΣOPEs via food was estimated as 65.4 ng/kg bw/day for adults in China, and the category of cereals was the major contributor (72.7%) of the dietary exposure to OPEs. The exposure risk of OPEs via food intake was generally low for the Chinese population. Overall, this study establishes a baseline concentration for OPEs in Chinese foodstuffs and uncovers food contact material as a potential source of OPEs in foods. It is expected that the research in terms of food safety and OPE contamination will benefit from this work.


Subject(s)
Esters , Flame Retardants , Adult , Animals , China , Environmental Monitoring , Esters/analysis , Flame Retardants/analysis , Food Packaging , Humans , Meat/analysis , Organophosphates/analysis , Phosphates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...