Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cranio ; 41(5): 416-422, 2023 Sep.
Article in English | MEDLINE | ID: mdl-33355036

ABSTRACT

OBJECTIVE: To investigate the relationship between upper airway morphology and the severity of obstructive sleep apnea (OSA) in patients with anatomically small retruded mandibles. METHODS: Fifty-two patients with small retruded mandibles underwent polysomnography and airway computed tomography. The airway morphology parameters and sleep assessment were compared between the patients with or without OSA. RESULTS: Twenty-eight patients diagnosed with OSA, according to polysomnography, had a higher distance between the hyoid bone and mandibular plane (HMP), lateral dimension (LAT)/anteroposterior dimension (AP), but lower minimum cross-sectional area (mCSA), AP, surface area, volume, avgCSA, and airway uniformity (U). The apnea-hypopnea index had negative correlations with mCSA, AP, surface area, volume, avgCSA, and U, and had a positive correlation with HMP and LAT/AP. CONCLUSION: OSA is common among patients with small retruded mandibles and is associated with a more compressed upper airway shape and longer HMP.


Subject(s)
Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/diagnostic imaging , Respiratory System , Sleep , Tomography, X-Ray Computed/methods , Mandible/diagnostic imaging
2.
J Orthop Translat ; 37: 12-22, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36196150

ABSTRACT

Background: Distraction osteogenesis (DO) is a widely used bone regenerative technique. However, the DO process is slow, and the consolidation phase is long. Therefore, it is of great clinical significance to explore the mechanism of DO, and shorten its duration. Recent studies reported that stem cell exosomes may play an important role in promoting angiogenesis related to DO, but the mechanism remains unclear. Methods: Canine endothelial colony-forming cells (ECFCs) were isolated and cultured, and the expression of THBS1 in canine ECFCs were inhibited using a lentiviral vector. The exosomes secreted by canine ECFCs were isolated and extracted, and the effect of exosomes on the angiogenic activity of Human umbilical vein endothelial cells (HUVECs) was detected by proliferation, migration, and tube formation experiments. WB and qRT-PCR were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on HUVECs angiogenesis. Then, a mandibular distraction osteogenesis (MDO) model was established in adult male beagles, and exosomes were injected into the canine peripheral blood. Micro-CT, H&E, Masson, and IHC staining were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on angiogenesis and osteogenesis in the DO area. Results: ECFC-Exo accelerated HUVECs proliferation, migration and tube formation, and this ability was enhanced by inhibiting the expression of THBS1 in ECFC-Exo. Using Western blot-mediated detection, we demonstrated that inhibiting THBS1 expression in ECFCs-Exo activated PI3K, AKT, and ERK phosphorylation levels in HUVECs, which promoted VEGF and bFGF expressions. In the DO model of the canine mandible, ECFCs-Exo injected into the peripheral blood aggregated into the DO gap, thus promoting angiogenesis and bone formation in the DO tissue by reducing THBS1 expression in ECFC-Exo. Conclusion: Our findings suggested that ECFC-Exos markedly enhances angiogenesis of endothelial cells, and promotes bone healing in canine MDO. Thus, THBS1 plays a crucial role in the ECFC-Exos-mediated regulation of canine MDO angiogenesis and bone remodeling. The translational potential of this article: This study reveals that the angiogenic promotion via THBS1 suppression in ECFC-Exos may be a promising strategy for shortening the DO duration.

3.
J Orthop Surg Res ; 17(1): 291, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35643547

ABSTRACT

BACKGROUND: Distraction osteogenesis (DO), a kind of bone regenerative process, is not only extremely effective, but the osteogenesis rate is far beyond ordinary bone fracture (BF) healing. Exosomes (Exo) are thought to play a part in bone regeneration and healing as key players in cell-to-cell contact. The object of this work was to determine whether exosomes derived from DO and BF serum could stimulate the Osteogenic Differentiation in these two processes, and if so, which genes could be involved. METHODS: The osteogenesis in DO-gap or BF-gap was evaluated using radiographic analysis and histological analysis. On the 14th postoperative day, DO-Exos and BF-Exos were isolated and cocultured with the jaw of bone marrow mesenchymal stem cells (JBMMSCs). Proliferation, migration and osteogenic differentiation of JBMMSCs were ascertained, after which exosomes RNA-seq was performed to identify the relevant gene. RESULTS: Radiographic and histological analyses manifested that osteogenesis was remarkably accelerated in DO-gap in comparison with BF-gap. Both of the two types of Exos were taken up by JBMMSCs, and their migration and osteogenic differentiation were also seen to improve. However, the proliferation showed no significant difference. Finally, exosome RNA-seq revealed that the lncRNA MSTRG.532277.1 and the mRNA F-box and leucine-rich repeat protein 14(FBXL14) may play a key role in DO. CONCLUSIONS: Our findings suggest that exosomes from serum exert a critical effect on the rapid osteogenesis in DO. This promoting effect might have relevance with the co-expression of MSTRG.532277.1 and FBXL14. On the whole, these findings provide new insights into bone regeneration, thereby outlining possible therapeutic targets for clinical intervention.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis, Distraction , RNA, Long Noncoding , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
4.
Front Cell Dev Biol ; 9: 720925, 2021.
Article in English | MEDLINE | ID: mdl-34790657

ABSTRACT

Distraction osteogenesis (DO) is used to treat large bone defects in the field of oral and maxillofacial surgery. Successful DO-mediated bone regeneration is dependent upon angiogenesis, and endothelial progenitor cells (EPCs) are key mediators of angiogenic processes. The N6-methyladenosine (m6A) methyltransferase has been identified as an important regulator of diverse biological processes, but its role in EPC-mediated angiogenesis during DO remains to be clarified. In the present study, we found that the level of m6A modification was significantly elevated during the process of DO and that it was also increased in the context of EPC angiogenesis under hypoxic conditions, which was characterized by increased METTL3 levels. After knocking down METTL3 in EPCs, m6A RNA methylation, proliferation, tube formation, migration, and chicken embryo chorioallantoic membrane (CAM) angiogenic activity were inhibited, whereas the opposite was observed upon the overexpression of METTL3. Mechanistically, METTL3 silencing reduced the levels of VEGF and PI3Kp110 as well as the phosphorylation of AKT, whereas METTL3 overexpression reduced these levels. SC79-mediated AKT phosphorylation was also able to restore the angiogenic capabilities of METTL3-deficient EPCs in vitro and ex vivo. In vivo, METTL3-overexpressing EPCs were additionally transplanted into the DO callus, significantly enhancing bone regeneration as evidenced by improved radiological and histological manifestations in a canine mandibular DO model after consolidation over a 4-week period. Overall, these results indicate that METTL3 accelerates bone regeneration during DO by enhancing EPC angiogenesis via the PI3K/AKT pathway.

5.
Stem Cell Res Ther ; 12(1): 101, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536058

ABSTRACT

BACKGROUND: Distraction osteogenesis (DO) is a highly efficacious form of reconstructive bone regeneration, but its clinical utility is limited by the prolonged period required for bone consolidation to occur. Understanding the mechanistic basis for DO and shortening this consolidation phase thus represent promising approaches to improving the clinical utility of this procedure. METHODS: A mandibular DO (MDO) canine model was established, after which small RNA sequencing was performed to identify relevant molecular targets genes. Putative miRNA target genes were identified through bioinformatics and confirmed through qPCR, Western blotting, and dual-luciferase reporter assays. Peripheral blood samples were collected to isolate serum and endothelial colony-forming cells (ECFCs) in order to measure miR-205, NOTCH2, and angiogenic cytokines expression levels. Lentiviral constructs were then used to inhibit or overexpress miR-205 and NOTCH2 in isolated ECFCs, after which the angiogenic activity of these cells was evaluated in migration, wound healing, proliferation, tube formation, and chick chorioallantoic membrane (CAM) assay. Autologous ECFCs transfected to knockdown miR-205 and were injected directly into the distraction callus. On days 14, 28, 35 and 42 after surgery, bone density was evaluated via CBCT, and callus samples were collected and evaluated via histological staining to analyze bone regeneration and remodeling. RESULTS: MiR-205 was identified as being one of the miRNAs that was most significantly downregulated in MDO callus samples. Downregulation of miR-205 was also observed in DO-ECFCs and serum of animals undergoing MDO. Inhibiting miR-205 markedly enhanced angiogenesis, whereas overexpressing miR-205 had the opposite effect in vitro. Importantly, NOTCH2, which is a unique regulator in bone angiogenesis, was identified as a miR-205 target gene. Consistent with this regulatory relationship, knocking down NOTCH2 suppressed angiogenesis, and transduction with a miR-205 inhibitor lentivirus was sufficient to rescue angiogenic activity. When ECFCs in which miR-205 had been inhibited were transplanted into the MDO callus, this significantly bolstered osteogenesis, and remodeling in vivo. CONCLUSIONS: MiR-205 is a significant regulator of the MDO process, and inhibiting this miRNA can accelerate MDO-related mineralization. Overall, these results offer new insights into the mechanistic basis for this procedure, highlighting potential targets for therapeutic clinical intervention.


Subject(s)
MicroRNAs , Osteogenesis, Distraction , Animals , Bone Regeneration/genetics , Dogs , Down-Regulation , MicroRNAs/genetics , Osteogenesis/genetics
6.
BMC Complement Med Ther ; 21(1): 53, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557814

ABSTRACT

BACKGROUND: Distraction osteogenesis (DO) is an effective treatment in craniomaxillofacial surgery. However, the issue of sufficient blood supply at the regeneration tissue has limited its wide application. Panax notoginseng saponins (PNS) is a Traditional Chinese Medicine that is commonly used to treat a range of angiogenic diseases. However, the mechanisms whereby PNS alters angiogenesis in endothelial progenitor cells (EPCs) have yet to be clarified. METHODS: EPCs were identified by immunofluorescence, confirmed by their uptake of fluorescently labeled Dil-ac-LDL and FITC-UEA-1. EPCs were treated with different concentrations of PNS, and the effects of PNS on cell proliferation were measured on the optimal concentration of PNS determined. The effects of PNS on angiogenesis and migration, angiogenic cytokines mRNA expression and the proteins of the Wnt pathway were investigated. Then knocked down ß-catenin in EPCs and treated with the optimum concentrational PNS, their angiogenic potential was evaluated in tube formation and migration assays. In addition, the expression of cytokines associated with angiogenesis and Wnt/ß-catenin was then assessed via WB and RT-qPCR. RESULTS: We were able to determine the optimal concentration of PNS in the promotion of cell proliferation, tube formation, and migration to be 6.25 mg/L. PNS treatment increased the mRNA levels of VEGF, bFGF, VE-Cadherin, WNT3a, LRP5, ß-catenin, and TCF4. After knocked down ß-catenin expression, we found that PNS could sufficient to partially reverse the suppression of EPC angiogenesis. CONCLUSIONS: Overall, 6.25 mg/L PNS can promote EPC angiogenesis via Wnt/ß-catenin signaling pathway activation.


Subject(s)
Endothelial Progenitor Cells/drug effects , Neovascularization, Physiologic/drug effects , Panax notoginseng/chemistry , Saponins/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dogs , Endothelial Progenitor Cells/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...