Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Oral Health ; 23(1): 1005, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097962

ABSTRACT

PURPOSE: The aim of this study was to examine the viability and efficacy of utilizing extraoral apicoectomy and retrograde filling in combination to seal the root canal system of mature molars without the need for root canal therapy (RCT) during the autotransplantation of teeth (ATT). MATERIALS AND METHODS: This study screened 27 patients who received ATT at the Department of Oral Surgery in the Hospital of Stomatology from 2019 to 2021. Extraoral apicoectomy and retrograde filling were performed, while RCT was temporarily not performed. The study analysed the periodontal status and masticatory function of transplanted teeth one to three years postoperation and used cone-beam computed tomography (CBCT) and periapical radiograph (PA) to evaluate the integrity of the periodontal space and intra/periapical inflammation. The potential predictors of survival/success were analysed statistically. We also conducted questionnaires and chewing efficiency tests. RESULTS: In this study, 27 TTs from 27 patients were found to be fully functional in terms of chewing ability. The overall survival rate was 100% (27/27), and the success rate was 70.4% (19/27). A total of 90.9% (20/22) of patients reported being satisfied or very satisfied with their TTs. Additionally, the chewing efficiency of the transplantation side was on average 82.0% of that of the healthy side, with a significant difference between the two sides (P < 0.05). None of the potential predictors were found to significantly affect the success or survival of the transplanted tooth (TT). CONCLUSION: The combination of extraoral apicoectomy and retrograde filling in TT showed promising outcomes, but further clinical cases and longer follow-up times are still required to validate the treatment plan.


Subject(s)
Root Canal Filling Materials , Root Canal Therapy , Humans , Transplantation, Autologous , Root Canal Therapy/methods , Apicoectomy , Molar , Treatment Outcome , Root Canal Filling Materials/therapeutic use
2.
Angew Chem Int Ed Engl ; 58(48): 17335-17341, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31560158

ABSTRACT

There is an exciting possibility to decentralize ammonia synthesis for fertilizer production or energy storage without carbon emission from H2 obtained from renewables at small units operated at lower pressure. However, no suitable catalyst has yet been developed. Ru catalysts are known to be promoted by heavier alkali dopants. Instead of using heavy alkali metals, Li is herein shown to give the highest rate through surface polarisation despite its poorest electron donating ability. This exceptional promotion rate makes Ru-Li catalysts suitable for ammonia synthesis, which outclasses industrial Fe counterparts by at least 195 fold. Akin to enzyme catalysis, it is for the first time shown that Ru-Li catalysts hydrogenate end-on adsorbed N2 stabilized by Li+ on Ru terrace sites to ammonia in a stepwise manner, in contrast to typical N2 dissociation on stepped sites adopted by Ru-Cs counterparts, giving new insights in activating N2 by metallic catalysts.

3.
Sci Rep ; 6: 20527, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26856760

ABSTRACT

Incorporation of Zn atoms into a nanosize Cu lattice is known to alter the electronic properties of Cu, improving catalytic performance in a number of industrially important reactions. However the structural influence of Zn on the Cu phase is not well studied. Here, we show that Cu nano-clusters modified with increasing concentration of Zn, derived from ZnO support doped with Ga(3+), can dramatically enhance their stability against metal sintering. As a result, the hydrogenation of dimethyl oxalate (DMO) to ethylene glycol, an important reaction well known for deactivation from copper nanoparticle sintering, can show greatly enhanced activity and stability with the CuZn alloy catalysts due to no noticeable sintering. HRTEM, nano-diffraction and EXAFS characterization reveal the presence of a small beta-brass CuZn alloy phase (body-centred cubic, bcc) which appears to greatly stabilise Cu atoms from aggregation in accelerated deactivation tests. DFT calculations also indicate that the small bcc CuZn phase is more stable against Cu adatom migration than the fcc CuZn phase with the ability to maintain a higher Cu dispersion on its surface.

4.
Angew Chem Int Ed Engl ; 53(30): 7838-42, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24962739

ABSTRACT

A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite-ZnO tetrahedrons around pre-formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high-quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type-II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis.

6.
Nat Commun ; 3: 1050, 2012.
Article in English | MEDLINE | ID: mdl-22968696

ABSTRACT

Methanol is an important platform molecule for chemical synthesis and its high energy density also renders it a good candidate as a cleaner transportation fuel. At present, methanol is manufactured from natural gas via the indirect syn-gas route. Here we show that ethylene glycol, a versatile chemical derived from biomass or fossil fuels, can be directly converted to methanol in hydrogen with high selectivity over a Pd/Fe(2)O(3) co-precipitated catalyst. This opens up a possibility for diversification in natural resources for energy-starved countries. The working catalyst contains extremely small 'PdFe' clusters and metal adatoms on defective iron oxide to give the required metal-support interaction for the novel synthesis.

9.
Langmuir ; 26(5): 3106-14, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20095544

ABSTRACT

A thermoreversible self-assemble process from gel (fiber) to sol (vesicle) state in the system alkylamine-ethylene glycol is for the first time monitored by in situ polarized optical microscopy, XRD, (1)H NMR, SEM, SAXRD, FTIR and drop shape analysis. It is found that the solvent molecules are intercalated with alkylamine molecules to form the organogel and vesicle structures. A model based on structural transformation with respect to these alkylamine gelator-solvent assembles is therefore proposed.

10.
J Pharm Biomed Anal ; 46(4): 699-706, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18178358

ABSTRACT

Morin [2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one], a member of flavonols, is an important bioactive compound by interacting with nucleic acids, enzymes and protein. Its binding to human serum albumin was investigated by fluorescence quenching, fluorescence anisotropy, and UV-vis absorbance under the simulative physiological condition. Fluorescence quenching data show that the interaction of morin with HSA forms a non-fluorescent complex with the binding constants of 1.394 x 10(5), 1.489 x 10(5), 1.609 x 10(5) and 1.717 x 10(5)M(-1) at 292, 298, 303 and 310 K, respectively. The thermodynamics parameters, enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be 8.97 kJ mol(-1) and 129.15 J mol(-1)K(-1) via van't Hoff equation. From the spectroscopic results and thermodynamics parameters, it is observed that van der Waals and hydrogen bonds are predominant intermolecular forces when forming the complex. The distance r=4.25 nm between donor (Trp214) and accepter (morin) was estimated based on the Förster theory of non-radiative energy transfer. The red shift of UV-vis absorbance shows that morin is bound to several amino acids on the hydrophobic pocket of HSA. Moreover, the competitive probes, such as warfarin and ibuprofen (site I and II probes, respectively), reveal that the binding location of morin to HSA in the site I of the hydrophobic pocket, which corresponds to the results of UV-vis absorbance, while morin also binds other lower affinity binding sites on HSA from the fluorescence anisotropy spectroscopy.


Subject(s)
Flavonoids/chemistry , Serum Albumin/chemistry , Binding Sites , Fluorescence Polarization , Humans , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...