Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(2): e53653, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38449968

ABSTRACT

Background Epidural hematomas (EDHs), which have a characteristic biconvex shape, are a type of post-traumatic intracranial mass. EDHs and other types of intracranial hematomas are often diagnosed with computed tomography (CT). The volumes of EDHs are important in treatment decisions and prognosis. Their volumes are usually estimated on CT using the "ABC" method, which is based on the ellipsoid shape rather than their biconvex shape. Objective To simulate the biconvex shape, we modeled the geometry of EDHs with two spherical caps. We aim to provide simpler estimation of EDH volumes in clinical settings, and eventually recommend a threshold for surgical evacuation. Methods Applying the relationship between the sphere radius, spherical cap height, and base circle radius, we derived formulas for the shape of an EDH, relating its largest diameter and location to the other two diameters. We also estimated EDH volumes using the spherical cap volume and conventional ABC formulas and then constructed a lookup table accordingly. Results Validation of the model was performed using 14 CT image sets from previously reported patients with EDHs. Our geometric model demonstrated accurate predictions. The model also allows reducing the number of parameters to be measured in the ABC method from three to one, the hematoma length, showcasing its potential as a reliable tool for clinical decision-making. Based on our model, an EDH longer than 7 cm would occupy more than 30 mL of the intracranial volume. Conclusion The proposed model offers a streamlined approach to estimating EDH volumes, reducing the complexity of parameters required for clinical assessments. We recommend a length of 7 cm as a threshold for surgical evacuation of EDHs. This acceleration in decision-making is crucial for managing critically injured patients with traumatic brain injuries. Further validation across diverse patient populations will enhance the generalizability and utility of this geometric modeling approach in clinical settings.

2.
Gen Thorac Cardiovasc Surg ; 70(2): 153-159, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34515948

ABSTRACT

OBJECTIVE: Ablation of the upper thoracic sympathetic ganglia that innervates the hands is the most effective and permanent cure of palmar hyperhidrosis. However, this type of sympathectomy causes irreversible neural damage and may result in severe compensatory hyperhidrosis. This experiment is designed to confirm the hypothesis, in which the stimulation of T2 sympathetic chain leads to increased palmar microcirculation, and thus results in treating hyperhidrosis. METHODS: In this study, we used electric stimulation to induce reversible blockade of the sympathetic ganglion in pigs and investigated its effect on palmar perfusion. An electrode was inserted to the T2 sympathetic ganglion of the pig through three different approaches: open dorsal, thoracoscopic, and fluoroscopy-guided approaches. Electric stimulation was delivered through the electrode using clinically available pulse generators. Palmar microcirculation was evaluated by laser speckle contrast imaging. RESULTS: The T2 sympathetic ganglion of the pig was successfully accessed by all the three approaches, as confirmed by changes in palmar microcirculation during electric stimulation. Similar effects were not observed when the electrode was placed on the T4 sympathetic ganglion or off the sympathetic trunk. CONCLUSION: We established a large animal model to verify the effect of thoracic sympathetic stimulation. Electric stimulation can be used for sympathetic blockade, as confirmed by increased blood perfusion of the palm. Our work suggests that sympathetic stimulation is a potential solution for palmar hyperhidrosis.


Subject(s)
Hyperhidrosis , Animals , Ganglia, Sympathetic , Hand , Hyperhidrosis/surgery , Perfusion , Swine , Sympathectomy , Treatment Outcome
3.
Neuroimage ; 244: 118585, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34560272

ABSTRACT

We report the set-up of the Intracranial Tumor Segmentation (ICTS) dataset. This dataset was retrieved from clinical work of radiosurgery, contoured by qualified neurosurgeons and radiation oncologists. It contains contrast-enhanced T1-weighted images of 1500 patients, together with the labels of tumors to be treated. The ICTS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Radiosurgery , Benchmarking , Brain Neoplasms/radiotherapy , Datasets as Topic , Humans , Image Enhancement , Neuroimaging , Online Systems
4.
Sci Rep ; 10(1): 21787, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311523

ABSTRACT

Although criteria for surgical treatment of acute subdural hematoma (SDH) have been proposed, interaction exists between SDH, midline shift (MLS), and intracranial pressure (ICP). Based on our half sphere finite-element model (FEM) of the supratentorial brain parenchyma, tools for ICP estimation using SDH thickness (SDHx) and MLS were developed. We performed 60 single load step, structural static analyses, simulating a left-sided SDH compressing the cerebral hemispheres. The Young's modulus was taken as 10,000 Pa. The ICP loads ranged from 10 to 80 mmHg with Poisson's ratios between 0.25 and 0.49. The SDHx and the MLS results were stored in a lookup table. An ICP estimation equation was derived from these data and then was converted into a nomogram. Numerical convergence was achieved in 49 model analyses. Their SDHx ranged from 0.79 to 28.3 mm, and the MLS ranged from 1.5 to 16.9 mm. The estimation formula was log(ICP) = 0.614-0.520 log(SDHx) + 1.584 log(MLS). Good correlations were observed between invasive ICP measurements and those estimated from preoperative SDHx and MLS data on images using our model. These tools can be used to estimate ICP noninvasively, providing additional information for selecting the treatment strategy in patients with SDH.


Subject(s)
Hematoma, Subdural, Acute/physiopathology , Intracranial Pressure , Models, Neurological , Nomograms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...