Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioeng Transl Med ; 8(1): e10357, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684101

ABSTRACT

Cytokine storm is a phenomenon whereby the overreaction of the human immune system leads to the release of inflammatory cytokines, which can lead to multiple organ dysfunction syndrome. At present, the existing drugs for the treatment of cytokine storm have limited efficacy and severe adverse effects. Here, we report a lymphatic targeting self-microemulsifying drug delivery system containing baicalein to effectively inhibit cytokine storm. Baicalein self-microemulsion with phospholipid complex as an intermediate carrier (BAPC-SME) prepared in this study could be spontaneously emulsified to form 12-nm oil-in-water nanoemulsion after administration. And then BAPC-SME underwent uptake by enterocyte through endocytosis mediated by lipid valve and clathrin, and had obvious characteristics of mesenteric lymph node targeting distribution. Oral administration of BAPC-SME could significantly inhibit the increase in plasma levels of 14 cytokines: TNF-α, IL-6, IFN-γ, MCP-1, IL-17A, IL-27, IL-1α, GM-CSF, MIG, IFN-ß, IL-12, MIP-3α, IL-23, and RANTES in mice experiencing systemic cytokine storm. BAPC-SME could also significantly improve the pathological injury and inflammatory cell infiltration of lung tissue in mice experiencing local cytokine storm. This study does not only provide a new lymphatic targeted drug delivery strategy for the treatment of cytokine storm but also has great practical significance for the clinical development of baicalein self-microemulsion therapies for cytokine storm.

2.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34272308

ABSTRACT

BACKGROUND: Mesenteric lymph nodes (MLNs) are critical draining lymph nodes of the immune system that accommodate more than half of the body's lymphocytes, suggesting their potential value as a cancer immunotherapy target. Therefore, efficient delivery of immunomodulators to the MLNs holds great potential for activating immune responses and enhancing the efficacy of antitumor immunotherapy. Self-microemulsifying drug delivery systems (SMEDDS) have attracted increasing attention to improving oral bioavailability by taking advantage of the intestinal lymphatic transport pathway. Relatively little focus has been given to the lymphatic transport advantage of SMEDDS for efficient immunomodulators delivery to the MLNs. In the present study, we aimed to change the intestinal lymphatic transport paradigm from increasing bioavailability to delivering high concentrations of immunomodulators to the MLNs. METHODS: Chlorogenic acid (CHA)-encapsulated SMEDDS (CHA-SME) were developed for targeted delivery of CHA to the MLNs. The intestinal lymphatic transport, immunoregulatory effects on immune cells, and overall antitumor immune efficacy of CHA-SME were investigated through in vitro and in vivo experiments. RESULTS: CHA-SME enhanced drug permeation through intestinal epithelial cells and promoted drug accumulation within the MLNs via the lymphatic transport pathway. Furthermore, CHA-SME inhibited tumor growth in subcutaneous and orthotopic glioma models by promoting dendritic cell maturation, priming the naive T cells into effector T cells, and inhibiting the immunosuppressive component. Notably, CHA-SME induced a long-term immune memory effect for immunotherapy. CONCLUSIONS: These findings indicate that CHA-SME have great potential to enhance the immunotherapeutic efficacy of CHA by activating antitumor immune responses.


Subject(s)
Chlorogenic Acid/pharmacology , Drug Delivery Systems/methods , Lymphatic Vessels/physiology , Neoplasms/drug therapy , Administration, Oral , Animals , Female , Humans , Male , Mice , Rats , Rats, Sprague-Dawley
3.
J Nanobiotechnology ; 19(1): 199, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34225762

ABSTRACT

BACKGROUND: Standard chemotherapy with taxanes, such as paclitaxel (PTX), remains the mainstay of systemic treatment of triple-negative breast cancer. Nanotechnology-based formulations have gradually replaced PTX injection and are widely used in China. However, no studies have compared the colloidal stability, antitumor efficacy, and safety of commercial PTX nanoformulations. Additionally, the desire to evaluate preclinical antitumor efficacy in human-derived tumor cells led to the widespread application of immunodeficient mouse models that likely contributed to the neglect of nanomedicines-immune system interactions. The present study investigated the colloidal stability, antitumor efficacy and safety, and nanomedicines-host immune system interactions of PTX nanoformulations. A further comparative analysis was performed to evaluate the clinical potential. RESULTS: Compared with liposome, PTX emulsion and PTX nanoparticle exhibited favorable colloidal stability. PTX emulsion was superior in inducing apoptosis and had a more pronounced inhibitory effect on 4T1-tumor spheroids compared with PTX liposome and PTX nanoparticle. Although PTX emulsion exhibited superior in vitro antitumor effect, no significant differences in the in vivo antitumor efficacy were found among the three types of PTX nanoformulations in an immunocompetent orthotopic 4T1 murine triple-negative breast cancer model. All PTX nanoformulations at maximum tolerated dose (MTD) induced lymphopenia and immunosuppression, as evidenced by the reduction of T cell subpopulations and inhibition of the dendritic cells maturation. CONCLUSIONS: The MTD PTX nanomedicines-induced lymphopenia and immunosuppression may weaken the lymphocyte-mediated antitumor cellular immune response and partly account for the lack of differences in the in vivo antitumor outcomes of PTX nanoformulations. Understanding of what impacts PTX nanomedicines has on the immune system may be critical to improve the design and conduct of translational research of PTX nanomedicines in monotherapy or combination therapy with immunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Immunosuppressive Agents/pharmacology , Nanomedicine/methods , Nanoparticles/chemistry , Paclitaxel/chemistry , Paclitaxel/pharmacology , Albumins/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Carriers , Emulsions/therapeutic use , Female , Immunotherapy/methods , Liposomes/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Nude , Triple Negative Breast Neoplasms/drug therapy
4.
Biomed Pharmacother ; 133: 110917, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33217688

ABSTRACT

Scutellaria baicalensis Georgi., a plant used in traditional Chinese medicine, has multiple biological activities, including anti-inflammatory, antiviral, antitumor, antioxidant, and antibacterial effects, and can be used to treat respiratory tract infections, pneumonia, colitis, hepatitis, and allergic diseases. The main active substances of S. baicalensis, baicalein, baicalin, wogonin, wogonoside, and oroxylin A, can act directly on immune cells such as lymphocytes, macrophages, mast cells, dendritic cells, monocytes, and neutrophils, and inhibit the production of the inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α, and other inflammatory mediators such as nitric oxide, prostaglandins, leukotrienes, and reactive oxygen species. The molecular mechanisms underlying the immunomodulatory and anti-inflammatory effects of the active compounds of S. baicalensis include downregulation of toll-like receptors, activation of the Nrf2 and PPAR signaling pathways, and inhibition of the nuclear thioredoxin system and inflammation-associated pathways such as those of MAPK, Akt, NFκB, and JAK-STAT. Given that in addition to the downregulation of cytokine production, the active constituents of S. baicalensis also have antiviral and antibacterial effects, they may be more promising candidate therapeutics for the prevention of infection-related cytokine storms than are drugs having only antimicrobial or anti-inflammatory activities.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cytokine Release Syndrome/prevention & control , Cytokines/antagonists & inhibitors , Immune System/drug effects , Inflammation Mediators/antagonists & inhibitors , Inflammation/prevention & control , Phytochemicals/therapeutic use , Scutellaria , Animals , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/isolation & purification , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Cytokines/metabolism , Humans , Immune System/immunology , Immune System/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism , Phytochemicals/adverse effects , Phytochemicals/isolation & purification , Scutellaria/chemistry , Signal Transduction
5.
Sci China Life Sci ; 64(7): 1097-1115, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33009993

ABSTRACT

As a potential cancer immunotherapeutic agent, chlorogenic acid (CHA) has entered phase II clinical trials in China as a lyophilized powder formulation for treating glioma. However, the in vivo instability of CHA necessitates daily intramuscular injections, resulting in patient noncompliance. In this study, CHA-phospholipid complex (PC)-containing PEGylated liposomes (CHA-PC PEG-Lipo, named as CPPL), with CHA-PC as the drug intermediate, were prepared to lower the administration frequency. CPPL demonstrated excellent physicochemical properties, enhanced tumor accumulation, and inhibited tumor growth even when the administration interval was prolonged to 4 days when compared to a CHA solution and CHA-PC loaded liposomes (CHA-PC Lipo, labeled as CPL), both of which only demonstrated antitumor efficacy with once-daily administration. Further evaluation of the in vivo antitumor immune mechanism suggested that the extended antitumor immune efficacy of CPPL could be attributed to its distinct immune-stimulating mechanism when compared with CHA solution and CPL, such as stimulating both CD4+ and CD8+ T cell infiltration, inhibiting myeloid-derived suppressor cell expression, reducing the expression of Th2 related factors, and notably, increasing the memory T cells in tumor tissues. This CHA-containing formulation could reduce the frequency of in vivo CHA administration during cancer treatment via T cells, especially memory T cell regulation.


Subject(s)
Chlorogenic Acid/pharmacology , Glioma/drug therapy , Immunotherapy/methods , Liposomes/pharmacology , T-Lymphocytes, Regulatory/drug effects , Animals , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Chlorogenic Acid/immunology , Disease Models, Animal , Glioma/immunology , Liposomes/immunology , Rats , T-Lymphocytes, Regulatory/immunology
6.
Int J Nanomedicine ; 14: 7291-7306, 2019.
Article in English | MEDLINE | ID: mdl-31564878

ABSTRACT

PURPOSE: The aims of this study were to prepare a baicalein self-microemulsion with baicalein-phospholipid complex as the intermediate (BAPC-SMEDDS) and to compare its effects with those of conventional baicalein self-microemulsion (CBA-SMEDDS) on baicalein oral absorption and lymphatic transport. METHODS: Two SMEDDS were characterized by emulsifying efficiency, droplet size, zeta potential, cloud point, dilution stability, physical stability, and in vitro release and lipolysis. Different formulations of 40 mg/kg baicalein were orally administered to Sprague-Dawley rats to investigate their respective bioavailabilities. The chylomicron flow blocking rat model was used to evaluate their lymphatic transport. RESULTS: The droplet sizes of BAPC-SMEDDS and CBA-SMEDDS after 100x dilution were 9.6±0.2 nm and 11.3±0.4 nm, respectively. In vivo experiments indicated that the relative bioavailability of CBA-SMEDDS and BAPC-SMEDDS was 342.5% and 448.7% compared to that of free baicalein (BA). The AUC0-t and Cmax of BAPC-SMEDDS were 1.31 and 1.87 times higher than those of CBA-SMEDDS, respectively. The lymphatic transport study revealed that 81.2% of orally absorbed BA entered the circulation directly through the portal vein, whereas approximately 18.8% was transported into the blood via lymphatic transport. CBA-SMEDDS and BAPC-SMEDDS increased the lymphatic transport ratio of BA from 18.8% to 56.2% and 70.2%, respectively. Therefore, self-microemulsion not only significantly improves oral bioavailability of baicalein, but also increases the proportion lymphatically transported. This is beneficial to the direct interaction of baicalein with relevant immune cells in the lymphatic system and for proper display of its effects. CONCLUSION: This study demonstrates the oral absorption and lymphatic transport characteristics of free baicalein and baicalein SMEDDS with different compositions. This is of great significance to studies on lymphatic targeted delivery of natural immunomodulatory compounds.


Subject(s)
Absorption, Physiological , Drug Delivery Systems , Emulsions/chemistry , Flavanones/administration & dosage , Flavanones/pharmacology , Phospholipids/chemistry , Administration, Oral , Animals , Biological Availability , Drug Compounding , Lymphatic System/drug effects , Lymphatic System/metabolism , Male , Rats , Rats, Sprague-Dawley , Solubility
7.
Pharm Res ; 34(6): 1244-1254, 2017 06.
Article in English | MEDLINE | ID: mdl-28326458

ABSTRACT

PURPOSE: To overcome the drawbacks of high dose regimen and improve the outcomes of chemotherapy at a low dose, an immunotherapeutic nanoemulsion based combination of chemotherapeutic agent (paclitaxel) with immunomodulatory agent (vitamin E) was developed and evaluated for their antitumor effect against breast cancer. METHODS: A total of five nanoemulsions loaded with various content of vitamin E were prepared and characterized. The immunoregulatory effects of vitamin E along with the overall antitumor efficacy of vitamin E-rich nanoemulsion with a low dose of paclitaxel were investigated through in vitro and in vivo experiments. RESULTS: Vitamin E-rich nanoemulsion exhibited relatively narrow size distribution, high entrapment efficiency and controlled in vitro release profile. In RAW264.7 cells, vitamin E-rich nanoemulsion significantly enhanced the secretion of Th1 cytokines and down-regulated the secretion of Th2 cytokine. In a co-culture system, vitamin E-rich nanoemulsion induced a high apoptosis rate in MDA-MB-231 cells as compared with vitamin E-low nanoemulsion. Furthermore, vitamin E-rich nanoemulsion exhibited superior in vivo antitumor efficacy in comparison with Taxol and vitamin E-low nanoemulsion at a paclitaxel dose of 4 mg/kg. CONCLUSIONS: Vitamin E-rich nanoemulsion has great potential for the treatment of breast cancers with a low dose of paclitaxel via driving Th1 immune response.


Subject(s)
Antineoplastic Agents/pharmacology , Cytokines/immunology , Nanoparticles/chemistry , Paclitaxel/pharmacology , Vitamin E/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Cell Line, Tumor , Coculture Techniques , Cytokines/metabolism , Drug Carriers , Drug Interactions , Emulsions , Female , Humans , Mice, Inbred C57BL , Paclitaxel/chemistry , Signal Transduction , Vitamin E/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...