Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 163: 308-320, 2019 05.
Article in English | MEDLINE | ID: mdl-30822403

ABSTRACT

Chronic myelogenous leukemia (CML) is clinically treated with imatinib, which inhibits the kinase activity of the Bcr-Abl oncoprotein. However, imatinib resistance remains a common clinical issue. Andrographolide, the major compound of the medicinal plant Andrographis paniculata, was reported to exhibit anticancer activity. In this study, we explored the therapeutic potential of andrographolide and its derivative, NCTU-322, against both imatinib-sensitive and imatinib-resistant human CML cell lines. Both andrographolide and NCTU-322 downregulated the Bcr-Abl oncoprotein in imatinib-resistant CML cells through an Hsp90-dependent mechanism similar to that observed in imatinib-sensitive CML cells. In addition, NCTU-322 had stronger effects than andrographolide on downregulation of Bcr-Abl oncoprotein, induction of Hsp90 cleavage and cytotoxicity of CML cells. Notably, andrographolide and NCTU-322 could induce differentiation, mitotic arrest and apoptosis of both imatinib-sensitive and imatinib-resistant CML cells. Finally, the anticancer activity of NCTU-322 against imatinib-resistant CML cells was demonstrated in vivo. In summary, our data demonstrated that andrographolide and NCTU-322 inhibit Bcr-abl function via a mechanism different from that of imatinib, and they induced multiple anticancer effects in both imatinib-sensitive and resistant CML cells. Our findings demonstrate that andrographolide and NCTU-322 are potential therapeutic agents again CML.


Subject(s)
Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genes, abl/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Diterpenes/chemistry , Drug Resistance, Neoplasm , Genes, abl/genetics , Humans , Imatinib Mesylate/pharmacology , Leukocytes, Mononuclear/drug effects , Molecular Structure
2.
PLoS One ; 11(4): e0152770, 2016.
Article in English | MEDLINE | ID: mdl-27035713

ABSTRACT

Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.


Subject(s)
Diterpenes/chemistry , Molecular Probes/chemistry , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...