Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(1)2023 12 30.
Article in English | MEDLINE | ID: mdl-38254950

ABSTRACT

Nutrients play important roles in the growth and development of most plant species. However, in perennial trees, the function of nutrients in different genotypes is poorly understood. Three different nutrient levels (low, sufficient, and high nutrient levels) were applied to two contrasting Eucalyptus urophylla cultivars (a high-growth cultivar ZQUA44 and a low-growth cultivar ZQUB15), and growth and expression levels were analyzed. Although the growth traits of both genotypes under nutrient starvation treatment were much lower than under abundant nutrients, tree height, crown width, and biomass of different ZQUA44 tissues were much higher than those of ZQUB15 at all three nutrient levels. Differentially expressed genes (DEGs) clustered into six subclusters based on their expression patterns, and functional annotation showed that the DEGs involved in glutathione metabolism and flavonoid biosynthesis may be responsible for nutrient starvation across different genotypes, while the DEGs involved in carotenoid biosynthesis and starch and sucrose metabolism may have a range of functions in different genotypes. The DEGs encoding the MYB-related family may be responsible for nutrient deficiency in all genotypes, while B3 may have different functions in different genotypes. Our results demonstrate that different genotypes may form different pathways to coordinate plant survival when they face abiotic stresses.


Subject(s)
Eucalyptus , Starvation , Eucalyptus/genetics , Gene Expression Profiling , Transcriptome/genetics , Genotype , Nitrogen , Trees
2.
Plant Physiol Biochem ; 185: 69-79, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35661587

ABSTRACT

Tree branches affect the planting density and basal scab, which act as important attributes in the yield and quality of trees. Eucalyptus urophylla is an important pioneer tree with characteristics of strong adaptability, fast growth, short rotation period, and low disease and pest pressures. In this study, we collected ZQUC14 and LDUD26 clones and compared their transcriptomes and metabolomes from mature xylem, phloem, and developing tissues to identify factors that may influence branch development. In total, 32,809 differentially expressed genes (DEGs) and 18 gibberellin (GA) hormones were detected in the five sampled tissues. Searches of the kyoto Encyclopedia of Genes and Genomes pathways identified mainly genes related to diterpenoid biosynthesis, plant MAPK signaling pathways, plant hormone signal transduction, glycerolipid metabolism, peroxisome, phenylpropanoid biosynthesis, ABC transporters, and brassinosteroid biosynthesis. Furthermore, gene expression trend analysis and weighted gene co-expression network analysis revealed 13 genes likely involved in diterpenoid biosynthesis, including five members of the 2OG-Fe(II) oxygenase superfamily, four cytochrome P450 genes, and four novel genes. In GA signal transduction pathways, 24 DEGs were found to positively regulate branch formation. These results provide a comprehensive analysis of branch development based on the transcriptome and metabolome, and help clarify the molecular mechanisms of E. urophylla.


Subject(s)
Eucalyptus , Transcriptome , Eucalyptus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gibberellins , Plant Growth Regulators/metabolism , Transcriptome/genetics
3.
Mol Genet Genomics ; 296(5): 1071-1083, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34159440

ABSTRACT

Branching in long-lived plants can cause scarring at the base and affect wood density, which greatly inhibits wood yield and quality. Eucalyptus urophylla is one of the most important commercial forest tree species in South China, with diverse branch number and branch angles under different genetic backgrounds. However, the main elements and regulatory mechanisms associated with different branching traits in E. urophylla remain unclear. To identify the factors that may influence branching, the transcriptome and metabolome were performed on the shoot apex (SA), lateral shoot apex (LSA), and stem segment at the 5th axillary bud from the shoot apex (S1) in lines ZQUC14 (A) and LDUD26 (B), with A exhibiting a smaller Ba than B. A total of 307.3 million high-quality clean reads and nine hormones were identified from six libraries. Several differentially expressed regulatory factors were identified between the two genotypes of E. urophylla. The Kyoto Encyclopedia of Genes and Genomes pathways were enriched in plant hormone signal transduction, plant hormone biosynthesis and their transport pathways. Furthermore, gene expression pattern analysis identified genes that were significantly downregulated or upregulated in S1 relative to the SA and LSA segments, and the plant hormone signal transduction pathway was constructed to explain branching development. This study clarified the main plant hormones and genes underlying branch numbers and angles of E. urophylla, confirmed that ABA and SA could promote a larger branch angle and smaller branch number, while IAA has an opposite function. Numbers of key candidate genes involved in plant hormone signal transduction were found in the positive regulation of branch formation. These novel findings should aid molecular breeding of branching in Eucalyptus.


Subject(s)
Eucalyptus/growth & development , Eucalyptus/genetics , Eucalyptus/metabolism , Plant Growth Regulators/metabolism , Chromatography, High Pressure Liquid , Gene Expression Profiling , Gene Expression Regulation, Plant , Genotype , Plant Growth Regulators/genetics , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Stems/genetics , Plant Stems/metabolism , Signal Transduction/genetics , Tandem Mass Spectrometry
4.
Ecotoxicology ; 30(8): 1769-1779, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33432457

ABSTRACT

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the crucial players in nitrogen cycle. Both AOA and AOB were examined along a gradient of human activity in a coastal ecosystem from intertidal zone, grassland, and Casuarina equisetifolia forest to farmland. Results showed that the farmland soils had noticeably higher nitrate-N, available P than soils in the other three sites. Generally, AOA and AOB community structures varied across sites. The farmland mainly had Nitrosotalea-like AOA, intertidal zone was dominated by Nitrosopumilus AOA, while grassland and C. equisetifolia forest primarily harbored Nitrososphaera-like AOA. The farmland and C. equisetifolia forest owned Nitrosospira-like AOB, intertidal zone possessed Nitrosomonas-like AOB, and no AOB was detected in the grassland. AOA abundance was significantly greater than AOB in this coastal ecosystem (p < 0.05, n = 8). AOB diversity and abundance in the farmland were significantly higher than those in the other three sites (p < 0.05, n = 2). The biodiversity and abundance of AOA were not significantly correlated with any soil property (p < 0.05, n = 8). However, the diversity of AOB was significantly correlated with pH, available P and total P (p < 0.05, n = 6). The abundance of AOB was significantly correlated with pH, nitrite, available N, available P and total P (p < 0.05, n = 6). This study suggested that the community structures of AOA and AOB vary in the different parts in the bio-engineered coastal ecosystem and agricultural activity appears to influence these nitrifiers.


Subject(s)
Ammonia , Archaea , Archaea/genetics , Bacteria/genetics , China , Ecosystem , Humans , Oxidation-Reduction , Phylogeny , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...