Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121578, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35797953

ABSTRACT

In this study, the core-shell of Fe3O4-Au nanoparticles (NPs) were prepared by seeding AuNPs onto Fe3O4 NPs modified with poly-ethylenimine (PEI). Later, Fe3O4-Au NPs were attached to cationic poly(dimethyldiallylammonium chloride) (PDDA)-modified graphene oxide (GO) nanosheets through in situ self-assembly behaviors, termed as Fe3O4-Au@RGO nanocomposites, for surface-enhanced Raman scattering (SERS) detection and hyperthermia treatment of bacteria. The resulting Fe3O4-Au@RGO nanocomposites were evaluated systematically by transmission electron microscope, zeta potential, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrating sample magnetometer. It revealed that the core-shell structured Fe3O4-Au NPs were dispersed homogeneously on the surface of the GO nanosheets. Furthermore, the rapid SERS detection for small biomolecules and bacteria was conducted by Raman spectroscopy. The results showed that the greatest SERS intensity was fne tuned at the weight ratio of Fe3O4-Au/RGO nanosheets was 20/1, displaying the optimal interparticle gap of AuNPs to induce the huge hot-spots effect. The magnetic inductive heating capability of Fe3O4-Au@RGO nanocomposites was produced under high frequency magnetic field exposure and can kill high than 90% of the bacteria at 10 min. Hence, the newly developed Fe3O4-Au@RGO nanocomposites were demonstrated to be viable for SERS detection of biomolecules and microbes and potential applications for magnetically capturing and hyperthermia treatment of bacteria.


Subject(s)
Hyperthermia, Induced , Metal Nanoparticles , Bacteria , Gold/chemistry , Graphite , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods
2.
Nanomaterials (Basel) ; 10(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260211

ABSTRACT

Magnetic reduced graphene oxide (MRGO) sheets were prepared by embedding Fe3O4 nanoparticles on polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride) (PDDA)-modified graphene oxide (GO) sheets for bacteria capture and destruction under a high-frequency magnetic field (HFMF). The characteristics of MRGO sheets were evaluated systematically by transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential measurement, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that magnetic nanoparticles (8-10 nm) were dispersed on MRGO sheets. VSM measurements confirmed the superparamagnetic characteristics of the MRGO sheets. Under HFMF exposure, the temperature of MRGO sheets increased from 25 to 42 °C. Furthermore, we investigated the capability of MRGO sheets to capture and destroy bacteria (Staphylococcus aureus). The results show that MRGO sheets could capture bacteria and kill them through an HFMF, showing a great potential in magnetic separation and antibacterial application.

3.
Nanoscale Res Lett ; 10(1): 412, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26489855

ABSTRACT

In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that the particle size of resultant nanoparticles displayed spherical structure with the size ~30 nm and further proved the successful immobilization of Au onto the surface of FePt@SiO2. Zeta potential measurement exhibited the successful reaction between FePt@SiO2 and AuNPs. The rapid SERS detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) was conducted through Raman spectroscopy. In summary, the novel core-shell magnetic nanoparticles could be anticipated to apply in the rapid magnetic separation under the external magnetic field due to the core of the FePt superparamagnetic nanoparticles and label-free SERS bio-sensing of biomolecules and bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...