Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Precis Clin Med ; 7(2): pbae009, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745917

ABSTRACT

Background: TP53 mutations and homologous recombination deficiency (HRD) occur frequently in breast cancer. However, the characteristics of TP53 pathogenic mutations in breast cancer patients with/without HRD are not clear. Methods: Clinical next-generation sequencing (NGS) of both tumor and paired blood DNA from 119 breast cancer patients (BRCA-119 cohort) was performed with a 520-gene panel. Mutations, tumor mutation burden (TMB), and genomic HRD scores were assessed from NGS data. NGS data from 47 breast cancer patients in the HRD test cohort were analyzed for further verification. Results: All TP53 pathogenic mutations in patients had somatic origin, which was associated with the protein expression of estrogen receptor and progestogen receptor. Compared to patients without TP53 pathologic mutations, patients with TP53 pathologic mutations had higher levels of HRD scores and different genomic alterations. The frequency of TP53 pathologic mutation was higher in the HRD-high group (HRD score ≥ 42) relative to that in the HRD-low group (HRD score < 42). TP53 has different mutational characteristics between the HRD-low and HRD-high groups. TP53-specific mutation subgroups had diverse genomic features and TMB. Notably, TP53 pathogenic mutations predicted the HRD status of breast cancer patients with an area under the curve (AUC) of 0.61. TP53-specific mutations, namely HRD-low mutation, HRD-high mutation, and HRD common mutation, predicted the HRD status of breast cancer patients with AUC values of 0.32, 0.72, and 0.58, respectively. Interestingly, TP53 HRD-high mutation and HRD common mutation combinations showed the highest AUC values (0.80) in predicting HRD status. Conclusions: TP53-specific mutation combinations predict the HRD status of patients, indicating that TP53 pathogenic mutations could serve as a potential biomarker for poly-ADP-ribose polymerase (PARP) inhibitors in breast cancer patients .

2.
BMC Endocr Disord ; 24(1): 68, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734621

ABSTRACT

BACKGROUND: To date, although most thyroid carcinoma (THCA) achieves an excellent prognosis, some patients experience a rapid progression episode, even with differentiated THCA. Nodal metastasis is an unfavorable predictor. Exploring the underlying mechanism may bring a deep insight into THCA. METHODS: A total of 108 THCA from Chinese patients with next-generation sequencing (NGS) were recruited. It was used to explore the gene alteration spectrum of THCA and identify gene alterations related to nodal metastasis in papillary thyroid carcinoma (PTC). The Cancer Genome Atlas THCA cohort was further studied to elucidate the relationship between specific gene alterations and tumor microenvironment. A pathway enrichment analysis was used to explore the underlying mechanism. RESULTS: Gene alteration was frequent in THCA. BRAF, RET, POLE, ATM, and BRCA1 were the five most common altered genes. RET variation was positively related to nodal metastasis in PTC. RET variation is associated with immune cell infiltration levels, including CD8 naïve, CD4 T and CD8 T cells, etc. Moreover, Step 3 and Step 4 of the cancer immunity cycle (CIC) were activated, whereas Step 6 was suppressed in PTC with RET variation. A pathway enrichment analysis showed that RET variation was associated with several immune-related pathways. CONCLUSION: RET variation is positively related to nodal metastasis in Chinese PTC, and anti-tumor immune response may play a role in nodal metastasis triggered by RET variation.


Subject(s)
High-Throughput Nucleotide Sequencing , Lymphatic Metastasis , Proto-Oncogene Proteins c-ret , Thyroid Cancer, Papillary , Thyroid Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Proto-Oncogene Proteins c-ret/genetics , Female , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Male , Middle Aged , Adult , Prognosis , Biomarkers, Tumor/genetics , Follow-Up Studies
3.
Sensors (Basel) ; 24(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38676004

ABSTRACT

To monitor the position and profile of therapeutic carbon beams in real-time, in this paper, we proposed a system called HiBeam-T. The HiBeam-T is a time projection chamber (TPC) with forty Topmetal-II- CMOS pixel sensors as its readout. Each Topmetal-II- has 72 × 72 pixels with the size of 83 µm × 83 µm. The detector consists of the charge drift region and the charge collection area. The readout electronics comprise three Readout Control Modules and one Clock Synchronization Module. This Hibeam-T has a sensitive area of 20 × 20 cm and can acquire the center of the incident beams. The test with a continuous 80.55 MeV/u 12C6+ beam shows that the measurement resolution to the beam center could reach 6.45 µm for unsaturated beam projections.

4.
Oncol Res ; 32(4): 691-702, 2024.
Article in English | MEDLINE | ID: mdl-38560565

ABSTRACT

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Subject(s)
Bone Neoplasms , Chlorophyllides , Nanoparticles , Neoplasms , Osteosarcoma , Photochemotherapy , Humans , CD47 Antigen , Cell Line, Tumor , Osteosarcoma/drug therapy , Immunotherapy , Bone Neoplasms/drug therapy , Hydrogen-Ion Concentration , Tumor Microenvironment
5.
Plant Cell ; 36(6): 2103-2116, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38445983

ABSTRACT

Bacterial pathogens deliver effectors into host cells to suppress immunity. How host cells target these effectors is critical in pathogen-host interactions. SUMOylation, an important type of posttranslational modification in eukaryotic cells, plays a critical role in immunity, but its effect on bacterial effectors remains unclear in plant cells. In this study, using bioinformatic and biochemical approaches, we found that at least 16 effectors from the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 are SUMOylated by the enzyme cascade from Arabidopsis thaliana. Mutation of SUMOylation sites on the effector HopB1 enhances its function in the induction of plant cell death via stability attenuation of a plant receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1. By contrast, SUMOylation is essential for the function of another effector, HopG1, in the inhibition of mitochondria activity and jasmonic acid signaling. SUMOylation of both HopB1 and HopG1 is increased by heat treatment, and this modification modulates the functions of these 2 effectors in different ways in the regulation of plant survival rates, gene expression, and bacterial infection under high temperatures. Therefore, the current work on the SUMOylation of effectors in plant cells improves our understanding of the function of dynamic protein modifications in plant-pathogen interactions in response to environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hot Temperature , Pseudomonas syringae , Sumoylation , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Host-Pathogen Interactions , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Oxylipins/metabolism , Plant Cells/metabolism , Plant Cells/microbiology , Cyclopentanes/metabolism , Signal Transduction , Cell Death
6.
J Pathol Clin Res ; 10(2): e12367, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38504382

ABSTRACT

Breast cancers involving mutations in homologous recombination (HR) genes, most commonly BRCA1 and BRCA2 (BRCA1/2), respond well to PARP inhibitors and platinum-based chemotherapy. However, except for these specific HR genes, it is not clear which other mutations contribute to homologous recombination defects (HRD). Here, we performed next-generation sequencing of tumor tissues and matched blood samples from 119 breast cancer patients using the OncoScreen Plus panel. Genomic mutation characteristics and HRD scores were analyzed. In the HR genes, we found that BRCA1/2 and PLAB2 mutations were related to HRD. HRD was also detected in a subset of patients without germline or somatic mutations in BRCA1/2, PLAB2, or other HR-related genes. Notably, LRP1B, NOTCH3, GATA2, and CARD11 (abbreviated as LNGC) mutations were associated with high HRD scores in breast cancer patients. Furthermore, functional experiments demonstrated that silencing CARD11 and GATA2 impairs HR repair efficiency and enhances the sensitivity of tumor cells to olaparib treatment. In summary, in the absence of mutations in the HR genes, the sensitivity of tumor cells to PARP inhibitors and platinum-based chemotherapy may be enhanced in a subset of breast cancer patients with LNGC somatic mutations.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Mutation , Homologous Recombination
7.
EMBO Rep ; 25(2): 489-505, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177916

ABSTRACT

Small peptides modulate multiple processes in plant cells, but their regulation by post-translational modification remains unclear. ROT4 (ROTUNDIFOLIA4) belongs to a family of Arabidopsis non-secreted small peptides, but knowledge on its molecular function and how it is regulated is limited. Here, we find that ROT4 is S-acylated in plant cells. S-acylation is an important form of protein lipidation, yet so far it has not been reported to regulate small peptides in plants. We show that this modification is essential for the plasma membrane association of ROT4. Overexpression of S-acylated ROT4 results in a dramatic increase in immune gene expression. S-acylation of ROT4 enhances its interaction with BSK5 (BRASSINOSTEROID-SIGNALING KINASE 5) to block the association between BSK5 and PEPR1 (PEP RECEPTOR1), a receptor kinase for secreted plant elicitor peptides (PEPs), thereby activating immune signaling. Phenotype analysis indicates that S-acylation is necessary for ROT4 functions in pathogen resistance, PEP response, and the regulation of development. Collectively, our work reveals an important role for S-acylation in the cross-talk of non-secreted and secreted peptide signaling in plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plants/metabolism , Peptides/metabolism , Acylation , Plant Immunity , Protein Kinases/metabolism
8.
Surgeon ; 22(2): e79-e86, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37838611

ABSTRACT

BACKGROUND: In clinical practice, contralateral incidental malignant foci (CIMFs) can be found in some early (cT1N0M0) papillary thyroid carcinomas (PTCs) on postoperative pathological examination. To screen out the patients with high risk of CIMF preoperatively would help in determining the extent of thyroid surgery. METHODS: From October 2016 to February 2021, 332 patients diagnosed with early (cT1N0M0) PTC who underwent total thyroidectomy were included and randomly allocated into a training dataset (n = 233) and a test dataset (n = 99). Demographic and clinicopathological features were recorded and analyzed using logistic regression analysis. A coefficient-based nomogram was developed and validated. RESULTS: Logistic regression analyses revealed that the predictive model including BRAF V600E mutation, multifocality and margin of the contralateral nodule achieved the best diagnostic performance. The nomogram showed good discrimination, with AUCs of 0.795 (95 % CI, 0.736-0.853) for the training set and 0.726 (95 % CI, 0.609-0.843) for the test set. The calibration curve of the nomogram presented good agreement. CONCLUSION: The risk stratification system can be used to quantify the probability of CIMF and may assist in helping the patients choose total thyroidectomy or thyroid lobectomy with early (cT1N0M0) PTC.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/surgery , Carcinoma, Papillary/surgery , Carcinoma, Papillary/genetics , Carcinoma, Papillary/pathology , Retrospective Studies , Risk Assessment
9.
Quant Imaging Med Surg ; 13(6): 3587-3601, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284121

ABSTRACT

Background: Knee osteoarthritis (OA) is harmful to people's health. Effective treatment depends on accurate diagnosis and grading. This study aimed to assess the performance of a deep learning (DL) algorithm based on plain radiographs in detecting knee OA and to investigate the effect of multiview images and prior knowledge on diagnostic performance. Methods: In total, 4,200 paired knee joint X-ray images from 1,846 patients (July 2017 to July 2020) were retrospectively analyzed. Kellgren-Lawrence (K-L) grading was used as the gold standard for knee OA evaluation by expert radiologists. The DL method was used to analyze the performance of anteroposterior and lateral plain radiographs combined with prior zonal segmentation to diagnose knee OA. Four groups of DL models were established according to whether they adopted multiview images and automatic zonal segmentation as the DL prior knowledge. Receiver operating curve analysis was used to assess the diagnostic performance of 4 different DL models. Results: The DL model with multiview images and prior knowledge obtained the best classification performance among the 4 DL models in the testing cohort, with a microaverage area under the receiver operating curve (AUC) and macroaverage AUC of 0.96 and 0.95, respectively. The overall accuracy of the DL model with multiview images and prior knowledge was 0.96 compared to 0.86 for an experienced radiologist. The combined use of anteroposterior and lateral images and prior zonal segmentation affected diagnostic performance. Conclusions: The DL model accurately detected and classified the K-L grading of knee OA. Additionally, multiview X-ray images and prior knowledge improved classification efficacy.

10.
EClinicalMedicine ; 60: 102001, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37251632

ABSTRACT

Background: Early diagnosis of breast cancer has always been a difficult clinical challenge. We developed a deep-learning model EDL-BC to discriminate early breast cancer with ultrasound (US) benign findings. This study aimed to investigate how the EDL-BC model could help radiologists improve the detection rate of early breast cancer while reducing misdiagnosis. Methods: In this retrospective, multicentre cohort study, we developed an ensemble deep learning model called EDL-BC based on deep convolutional neural networks. The EDL-BC model was trained and internally validated on B-mode and color Doppler US image of 7955 lesions from 6795 patients between January 1, 2015 and December 31, 2021 in the First Affiliated Hospital of Army Medical University (SW), Chongqing, China. The model was assessed by internal and external validations, and outperformed radiologists. The model performance was validated in two independent external validation cohorts included 448 lesions from 391 patients between January 1 to December 31, 2021 in the Tangshan People's Hospital (TS), Chongqing, China, and 245 lesions from 235 patients between January 1 to December 31, 2021 in the Dazu People's Hospital (DZ), Chongqing, China. All lesions in the training and total validation cohort were US benign findings during screening and biopsy-confirmed malignant, benign, and benign with 3-year follow-up records. Six radiologists performed the clinical diagnostic performance of EDL-BC, and six radiologists independently reviewed the retrospective datasets on a web-based rating platform. Findings: The area under the receiver operating characteristic curve (AUC) of the internal validation cohort and two independent external validation cohorts for EDL-BC was 0.950 (95% confidence interval [CI]: 0.909-0.969), 0.956 (95% [CI]: 0.939-0.971), and 0.907 (95% [CI]: 0.877-0.938), respectively. The sensitivity values were 94.4% (95% [CI]: 72.7%-99.9%), 100% (95% [CI]: 69.2%-100%), and 80% (95% [CI]: 28.4%-99.5%), respectively, at 0.76. The AUC for accurate diagnosis of EDL-BC (0.945 [95% [CI]: 0.933-0.965]) and radiologists with artificial intelligence (AI) assistance (0.899 [95% [CI]: 0.883-0.913]) was significantly higher than that of the radiologists without AI assistance (0.716 [95% [CI]: 0.693-0.738]; p < 0.0001). Furthermore, there were no significant differences between the EDL-BC model and radiologists with AI assistance (p = 0.099). Interpretation: EDL-BC can identify subtle but informative elements on US images of breast lesions and can significantly improve radiologists' diagnostic performance for identifying patients with early breast cancer and benefiting the clinical practice. Funding: The National Key R&D Program of China.

11.
Vet Med Sci ; 9(3): 1211-1216, 2023 05.
Article in English | MEDLINE | ID: mdl-36772910

ABSTRACT

Tenvermectin (TVM) is a novel 16-membered macrolide compound isolated and purified from the fermentation broth of genetically engineered Streptomyces avermitilis strain MHJ1011. TVM and ivermectin were administered at the dose of 0.3 mg/kg body weight through a single subcutaneous injection route followed by plasma collectiom and analysis at different time intervals. Plasma concentrations of TVM and IVM were determined by high-performance liquid chromatography with fluorescence detector. Pharmacokinetic analysis was completed using the non-compartmental method with WinNonlin™ 6.4 software. TVM is rapidly absorbed after administration with peak plasma concentrations (Cmax , 9.78 ± 2.34 ng/ml) obtained within 6-22 h. AUC0-last was 586.86 h·ng/ml ± 121.24 h·ng/ml. The mean elimination half-life of TVM (T1/2λz ) was 97.99 h ± 46.41 h. The T1/2λz of IVM was 146.59 h ± 22.26 h in the study. The present study showed that subcutaneous administration of TVM at 0.3 mg/kg body weight (BW) in swine is absorbed more rapidly than IVM in swine. Compared to the pharmacokinetic characteristics of IVM, there was little difference in the half-life of TVM among different individuals. The data will contribute to refining the formulation and dosage regime for TVM administration.


Subject(s)
Antiparasitic Agents , Ivermectin , Animals , Swine , Ivermectin/pharmacokinetics , Area Under Curve , Body Weight
12.
Eur Radiol ; 33(6): 3995-4006, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36571604

ABSTRACT

OBJECTIVES: To comprehensively assess osteoporosis in the lumbar spine, a compositional MR imaging technique is proposed to quantify proton fractions for all the water components as well as fat in lumbar vertebrae measured by a combination of a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) MRI and IDEAL-IQ. METHODS: A total of 182 participants underwent MRI, quantitative CT, and DXA. Lumbar collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), total water proton fraction (TWPF), bone mineral density (BMD), and T-score were calculated in three vertebrae (L2-L4) for each subject. The correlations of the CBWPF, FWPF, and TWPF with BMD and T-score were investigated respectively. A comprehensive diagnostic model combining all the water components and clinical characteristics was established. The performances of all the water components and the comprehensive diagnostic model to discriminate between normal, osteopenia, and osteoporosis cohorts were also evaluated using receiver operator characteristic (ROC). RESULTS: The CBWPF showed strong correlations with BMD (r = 0.85, p < 0.001) and T-score (r = 0.72, p < 0.001), while the FWPF and TWPF showed moderate correlations with BMD (r = 0.65 and 0.68, p < 0.001) and T-score (r = 0.47 and 0.49, p < 0.001). The high area under the curve values obtained from ROC analysis demonstrated that CBWPF, FWPF, and TWPF have the potential to differentiate the normal, osteopenia, and osteoporosis cohorts. At the same time, the comprehensive diagnostic model shows the best performance. CONCLUSIONS: The compositional MRI technique, which quantifies CBWPF, FWPF, and TWPF in trabecular bone, is promising in the assessment of bone quality. KEY POINTS: • Compositional MR imaging technique is able to quantify proton fractions for all the water components (i.e., collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), and total water proton fraction (TWPF)) in the human lumbar spine. • The biomarkers derived from the compositional MR imaging technique showed moderate to high correlations with bone mineral density (BMD) and T-score and showed good performance in distinguishing people with different bone mass. • The comprehensive diagnostic model incorporating CBWPF, FWPF, TWPF, and clinical characteristics showed the highest clinical diagnostic capability for the assessment of osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis , Humans , Lumbar Vertebrae/diagnostic imaging , Cancellous Bone/diagnostic imaging , Protons , Osteoporosis/diagnostic imaging , Bone Density , Magnetic Resonance Imaging/methods , Water , Collagen , Absorptiometry, Photon/methods
13.
Cancer Med ; 12(5): 5409-5419, 2023 03.
Article in English | MEDLINE | ID: mdl-36341543

ABSTRACT

OBJECTIVE: This study aims to demonstrate the advantages of NGS molecular classification in EC diagnosis and to assess whether molecular classification could be performed on curettage specimens and its concordance with subsequent hysterectomy specimens. METHODS: 80 patients with hysterectomy specimens and 35/80 patients with paired curettage specimens were stratified as POLE mut, MSI-H, TP53 wt, or TP53 abn group by NGS panel. Histotype, tumor grade, IHC results, and other pathological details were taken from original pathological reports. RESULTS: The correlation analysis of 80 patients with hysterectomy specimens between NGS molecular classification and clinicopathological characters displayed that the POLE mut group was associated with EEC (87.5%) and TP53 abn subtype was correlated to a later stage (Stage II-IV, 47.6%), G3 (76.2%), serous histology (61.9%) and myometrial invasion ≥50% (47.6%). A favorable concordance (31/32, 96.9%) was shown in MSI analysis and MMR IHC results, and the agreement rate of p53 IHC and TP53 mutation was 81.5% (53/65). Compared with the p53 IHC abnormal group, the TP53 mutation group had a higher correlation with high-risk factors. A high level of concordance (31/35, 88.0%) of NGS molecular classification was achieved between curettage specimens and hysterectomy specimens while grade and histotype (including unclassified group) from curettage specimens and hysterectomy specimens showed only moderate levels of agreement, 54.3% (19/35) and 68.6% (24/35), respectively. CONCLUSION: NGS molecular classification achieved on curettage samples showed high concordance with the final hysterectomy specimens, demonstrating superior to the conventional pathological assessment of grade and histotype and potential utilization in clinical practice.


Subject(s)
Endometrial Neoplasms , Tumor Suppressor Protein p53 , Female , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/analysis , Hysterectomy , Immunohistochemistry , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Microsatellite Instability
14.
Transl Cancer Res ; 11(11): 3986-3999, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36523307

ABSTRACT

Background: The nature of the tumor immune microenvironment (TME) is essential for the head and neck squamous cell carcinomas (HNSCC) initiation, prognosis, and response to immunotherapy. However, its gene regulatory network remains to be elucidated. Methods: To identify N6-methyladenosine (m6A) regulators that are involved in regulating the HNSCC TME, a computational screen was applied to The Cancer Genome Atlas (TCGA) HNSCC patient samples. The effects of mutation, copy number variation (CNV), and transcriptional regulation on YTHDF1 expression were analyzed. We analyzed the TME infiltration, cancer-immunity cycle activities, and YTHDF1-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results: Among the 24 m6A regulators, 3 factors (YTHDF1, ELAVL1, and METTL3) were highly correlated with TME infiltration. As the top candidate, YTHDF1 was up-regulated and amplified in HNSCC. YTHDF1 promoter gains active histone marks and high chromatin accessibility, which might be transcriptionally activated by SOX2 and TP63. Moreover, YTHDF1 expression significantly associates with tumor malignant phenotype in HNSCC, which has a positive correlation with CD4+ T cells and a negative correlation with CD8+ T cells infiltration. Specifically, YTHDF1 expression is negatively associated with the cancer-immunity cycle and immune checkpoint inhibitors. In terms of the underlying biological mechanisms, YTHDF1 may interact with YTHDF2/3 to regulate several vital immune-related pathways. Conclusions: We identify YTHDF1 associated with TME and elucidate an underlying mechanism of immune escape in HNSCC, which might be used as a predictive marker in guiding immunotherapy.

15.
Int Immunopharmacol ; 110: 108846, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35816946

ABSTRACT

Tumor mutation burden high (TMB-H) is widely used in the guidance of immune checkpoint blocking (ICB) therapy for head and neck squamous cell carcinoma (HNSCC) patients. However, a few patients still had a poor response. Therefore, it is necessary to investigate a better model to guide ICB therapy. We constructed a genomic mutation model conducive to ICB therapy using an available HNSCC dataset. Moreover, treatment procedures for patients with HNSCC from our internal cohort confirmed this model. Here, a genomic mutation signature based on a list of 25 candidate genes that are favorable for immunotherapy was established. Patients with combined mutation had a respectable clinical outcome under ICB treatment. Notably, compared with patients who obtained TMB-H (TMB ≥ 10, but did not have combined mutation), those patients with TMB-L (TMB < 10) and combined mutation acquired remarkably beneficial overall survival. Moreover, the combined mutation signature predicting the survival status of patients was superior to TMB, with a Youden index of 0.55. Furthermore, higher immune cell infiltration levels, more active cancer-immunity cycle activities and immune response pathways were observed in patients with combined mutation. Finally, our internal cohort further confirmed that combined mutated patients can benefit from ICB therapy rather than any other patients.


Subject(s)
Head and Neck Neoplasms , Immunotherapy , Biomarkers, Tumor/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Humans , Immunotherapy/methods , Mutation , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy
16.
Front Microbiol ; 13: 936585, 2022.
Article in English | MEDLINE | ID: mdl-35875589

ABSTRACT

This study aimed to investigate the potential role of gut microbiota in the hepatotoxicity of sodium valproate (SVP) and the protective effect of ginsenoside compound K (G-CK) administration against SVP-induced hepatotoxicity in rats. Measurements of 16S rRNA showed that SVP supplementation led to a 140.749- and 248.900-fold increase in the relative abundance of Akkermansia muciniphila (A. muciniphila) and Bifidobacterium pseudolongum (B. pseudolongum), respectively (p < 0.05). The increase in A. muciniphila was almost completely reversed by G-CK treatment. The relative abundance of A. muciniphila was strongly positively correlated with aspartate transaminase (AST) and alanine aminotransferase (ALT) levels (r > 0.78, p < 0.05). The PICRUSt analysis showed that G-CK could inhibit the changes of seven pathways caused by SVP, of which four pathways, including the fatty acid biosynthesis, lipid biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism, were found to be negatively correlated with AST and ALT levels (r ≥ 0.70, p < 0.01 or < 0.05). In addition, the glycolysis/gluconeogenesis and pyruvate metabolism were negatively correlated with the relative abundance of A. muciniphila (r > 0.65, p < 0.01 or < 0.05). This alteration of the gut microbiota composition that resulted in observed changes to the glycolysis/gluconeogenesis and pyruvate metabolism may be involved in both the hepatotoxicity of SVP and the protective effect of G-CK administration against SVP-induced hepatotoxicity. Our study provides new evidence linking the gut microbiota with SVP-induced hepatotoxicity.

17.
Cent Eur J Immunol ; 47(1): 30-40, 2022.
Article in English | MEDLINE | ID: mdl-35600157

ABSTRACT

Chronic inflammation develops when the immune system is unable to clear a persistent insult. Unresolved chronic inflammation leads to immunosuppression to maintain the internal homeostatic conditions, which is mediated primarily by myeloid-derived suppressor cells (MDSCs). Toll-like receptors 2 (TLR2) has an important role in chronic inflammation and can be activated by a vast number and diversity of TLR2 ligands, for example Pam2CSK4. However, the regulatory effect of TLR2 signaling on MDSCs in chronic inflammation remains controversial. This study demonstrated that heat-killed Mycobacterium bovis BCG-induced pathology-free chronic inflammation triggered suppressive monocytic MDSCs (M-MDSCs) that expressed TLR2. Activation of TLR2 signaling by Pam2CSK4 treatment enhanced immunosuppression of M-MDSCs by upregulating inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) production partly through signal transducer and activator of transcription 3 (STAT3) activation. Thus, TLR2 has a fundamental role in promoting the MDSC-mediated immunosuppressive environment during chronic inflammation and might represent a potentially therapeutic target in chronic inflammation disease.

18.
Front Pharmacol ; 13: 755469, 2022.
Article in English | MEDLINE | ID: mdl-35359877

ABSTRACT

Background: Hyzetimibe is a novel inhibitor of cholesterol that specifically targets the NPC1L1 gene. Significant inter-individual variability suggests the existence of an abundance of poor responders and non-responders. In addition, the current literature is inconsistent and controversial regarding the potential impact of the Niemann-Pick C1-Like 1 (NPC1L1) gene on low-density lipoprotein cholesterol (LDL-C) reduction. In light of these concerns, we performed a high-quality clinical trial to investigate the specific characteristics of NPC1L1 gene variation on LDL-C reduction. Methods: This was a multicenter, randomized, double-blind, placebo-controlled, clinical trial with a factorial design. Qualified patients were randomly assigned to one of six treatments: placebo, hyzetimibe (10 or 20 mg), atorvastatin, and atorvastatin plus hyzetimibe (10 or 20 mg). Fasting blood samples were collected and genotyped, and the concentrations of LDL-C and the targeted drug trough were determined to investigate the association between the NPC1L1 gene expression and the reduction of LDL-C. Results: In total, 727 individuals were initially recruited; of these, 444 were eligible to begin the trial. We identified one SNP (g1679C > G) that exerted significantly different impacts on LDL-C levels. As monotherapy, CC carriers experienced significantly higher reductions in the mean LDL-C (-23.99%) than either the GG (-16.45%, p < 0.01) or GC (-13.02%, p < 0.01) carriers in the hyzetimibe (20 mg) group. In contrast, when co-administered with atorvastatin, GC carriers experienced greater LDL-C reduction than non-GC carriers (-52.23% vs. -45.03%) in the hyzetimibe (20 mg) plus atorvastatin group. Furthermore, the proportions of individuals experiencing a reduction in LDL-C by >50% increased as the dose of hyzetimibe increased from 16.1% to 65.4%. Conclusion: The g1679C > G SNP in the NPC1L1 gene is critical and exerts a differential impact on the response to hyzetimibe treatment. Heterozygotic patients respond with poor efficacy when treated by monotherapy but show good responses in terms of LDL-C reduction when hyzetimibe was co-administered with atorvastatin. To treat hypercholesterolemia in a precise manner with hyzetimibe, it is necessary to identify genotype patients for the g1679C > G SNP. We also highlight the potential necessity for identifying the appropriate subjects to be treated with ezetimibe. Clinical Trial Registration: [https://clinicaltrials.gov/], identifier [CTR20150351].

19.
Front Endocrinol (Lausanne) ; 13: 801930, 2022.
Article in English | MEDLINE | ID: mdl-35250862

ABSTRACT

AIM: Bone collagen matrix makes a crucial contribution to the mechanical properties of bone by imparting tensile strength and elasticity. The collagen content of bone is accessible via quantification of collagen bound water (CBW) indirectly. We prospectively study the performance of the CBW proton density (CBWPD) measured by a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) magnetic resonance imaging (MRI) sequence in the diagnosis of osteoporosis in human lumbar spine. METHODS: A total of 189 participants with a mean age of 56 (ranged from 50 to 86) years old were underwent MRI, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DXA) in lumbar spine. Major fracture risk was also evaluated for all participants using Fracture Risk Assessment Tool (FRAX). Lumbar CBWPD, bone marrow fat fraction (BMFF), bone mineral density (BMD) and T score values were calculated in three vertebrae (L2-L4) for each subject. Both the CBWPD and BMFF were correlated with BMD, T score, and FRAX score for comparison. The abilities of the CBWPD and BMFF to discriminate between three different cohorts, which included normal subjects, patients with osteopenia, and patients with osteoporosis, were also evaluated and compared using receiver operator characteristic (ROC) analysis. RESULTS: The CBWPD showed strong correlation with standard BMD (R2 = 0.75, P < 0.001) and T score (R2 = 0.59, P < 0.001), as well as a moderate correlation with FRAX score (R2 = 0.48, P < 0.001). High area under the curve (AUC) values (≥ 0.84 using QCT as reference; ≥ 0.76 using DXA as reference) obtained from ROC analysis demonstrated that the CBWPD was capable of well differentiating between the three different subject cohorts. Moreover, the CBWPD had better correlations with BMD, T score, and FRAX score than BMFF, and also performed better in cohort discrimination. CONCLUSION: The STAIR-UTE-measured CBWPD is a promising biomarker in the assessment of bone quality and fracture risk.


Subject(s)
Fractures, Bone , Osteoporosis , Aged , Aged, 80 and over , Cancellous Bone/diagnostic imaging , Collagen , Humans , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Imaging , Middle Aged , Osteoporosis/diagnostic imaging , Water
20.
Front Pharmacol ; 12: 730461, 2021.
Article in English | MEDLINE | ID: mdl-34512354

ABSTRACT

Depression disorder is one of the most serious mental illnesses in the world. Escitalopram is the essential first-line medication for depression disorder. It is the substrate of hepatic cytochrome P450 (CYP) enzyme CYP2C19 with high polymorphism. The effect of CYP2C19 on pharmacokinetics and pharmacodynamics on Caucasian population has been studied. The Clinical Pharmacogenetics Implementation Consortium Guideline provides dosing recommendations for escitalopram on CYP2C19 genotypes on the basis of the studies on Caucasian population. However, the gene frequency of the alleles of CYP2C19 showed racial differences between Chinese and Caucasian populations. Representatively, the frequency of the *2 and *3 allele, which were considered as poor metabolizer, has been shown to be three times higher in Chinese than in Caucasians. In addition, the environments might also lead to different degrees of impacts on genotypes. Therefore, the guidelines based on the Caucasians may not be applicable to the Chinese, which induced the establishment of a guideline in China. It is necessary to provide the evidence of individual treatment of escitalopram in Chinese by studying the effect of CYP2C19 genotypes on the pharmacokinetics parameters and steady-state concentration on Chinese. In this study, single-center, randomized, open-label, two-period, two-treatment crossover studies were performed. Ninety healthy Chinese subjects finished the trials, and they were included in the statistical analysis. The pharmacokinetics characteristics of different genotypes in Chinese were obtained. The results indicate that the poor metabolizer had higher exposure, and increased half-life than the extensive metabolizer and intermediate metabolite. The prediction of steady-state concentration based on the single dose trial on escitalopram shows that the poor metabolizer might have a higher steady-state concentration than the extensive metabolizer and intermediate metabolite in Chinese. The results indicate that the genetic testing before medication and the adjustment of escitalopram in the poor metabolizer should be considered in the clinical treatments in Chinese. The results provide the evidence of individual treatment of escitalopram in Chinese, which will be beneficial for the safer and more effective application of escitalopram in the Chinese population. Clinical Trial Registration: identifier ChiCTR1900027226.

SELECTION OF CITATIONS
SEARCH DETAIL
...