Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256237

ABSTRACT

R2R3-MYB represents a substantial gene family that plays diverse roles in plant development. In this study, 102 SmR2R3-MYB genes were identified from eggplant fruit and classified into 31 subfamilies. Analysis indicated that segmental duplication events played a pivotal role in the expansion of the SmR2R3-MYB gene family. Furthermore, the prediction of miRNAs targeting SmR2R3-MYB genes revealed that 60 SmR2R3-MYBs are targeted by 57 miRNAs, with specific miRNAs displaying varying numbers of target genes, providing valuable insights into the regulatory functions of miRNAs in plant growth, development, and responses to stress conditions. Through expression profile analysis under various treatment conditions, including low temperature (4 °C), plant hormone (ABA, Abscisic acid), and drought stress (PEG, Polyethylene glycol), diverse and complex regulatory mechanisms governing SmR2R3-MYB gene expression were elucidated. Notably, EGP21875.1 and EGP21874.1 exhibited upregulation in expression under all treatment conditions. Transcriptome and metabolome analyses demonstrated that, apart from anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-(6-O-p-coumaroyl)-glucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside), overexpression of SmMYB75 could also elevate the content of various beneficial compounds, such as flavonoids, phenolic acids, and terpenes, in eggplant pulp. This comprehensive study enhances our understanding of SmR2R3-MYB gene functions and provides a strong basis for further research on their roles in regulating anthocyanin synthesis and improving eggplant fruit quality.


Subject(s)
MicroRNAs , Solanum melongena , Genes, myb , Anthocyanins/genetics , Solanum melongena/genetics , Fruit/genetics , Glucosides , MicroRNAs/genetics
2.
Plant Physiol ; 194(2): 1139-1165, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37815242

ABSTRACT

Low light conditions severely suppress anthocyanin synthesis in fruit skins, leading to compromised fruit quality in eggplant (Solanum melongena L.) production. In this study, we found that exogenous methyl-jasmonate (MeJA) application can effectively rescue the poor coloration of the eggplant pericarp under low light conditions. However, the regulatory relationship between jasmonate and light signaling for regulating anthocyanin synthesis remains unclear. Here, we identified a JA response factor, SmMYB5, as an anthocyanin positive regulator by applying RNA-sequencing and characterization of transgenic plants. Firstly, we resolved that SmMYB5 can interact with TRANSPARENT TESTA8 (SmTT8), an anthocyanin-promoted BASIC HELIX-LOOP-HELIX (bHLH) transcription factor, to form the SmMYB5-SmTT8 complex and activate CHALCONE SYNTHASE (SmCHS), FLAVANONE-3-HYDROXYLASE (SmF3H), and ANTHOCYANIN SYNTHASE (SmANS) promoters by direct binding. Secondly, we revealed that JA signaling repressors JASMONATE ZIM DOMAIN5 (SmJAZ5) and SmJAZ10 can interfere with the stability and transcriptional activity of SmMYB5-SmTT8 by interacting with SmMYB5. JA can partially rescue the transcriptional activation of SmF3H and SmANS promoters by inducing SmJAZ5/10 degradation. Thirdly, we demonstrated that the protein abundance of SmMYB5 is regulated by light. CONSTITUTIVELY PHOTOMORPHOGENIC1 (SmCOP1) interacts with SmMYB5 to trigger SmMYB5 degradation via the 26S proteasome pathway. Finally, we delineated a light-dependent JA-SmMYB5 signaling pathway that promotes anthocyanin synthesis in eggplant fruit skins. These results provide insights into the mechanism of the integration of JA and light signals in regulating secondary metabolite synthesis in plants.


Subject(s)
Solanum melongena , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Solanum melongena/genetics , Solanum melongena/metabolism , Anthocyanins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...