Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(20): eadn1095, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748790

ABSTRACT

Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.

2.
Angew Chem Int Ed Engl ; 63(24): e202404100, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38616169

ABSTRACT

Exploration of efficient red emitting antimony hybrid halide with large Stokes shift and zero self-absorption is highly desirable due to its enormous potential for applications in solid light emitting, and active optical waveguides. However, it is still challenging and rarely reported. Herein, a series of (TMS)2SbCl5 (TMS=triphenylsulfonium cation) crystals have been prepared with diverse [SbCl5]2- configurations and distinctive emission color. Among them, cubic-phase (TMS)2SbCl5 shows bright red emission with a large Stokes shift of 312 nm. In contrast, monoclinic and orthorhombic (TMS)2SbCl5 crystals deliver efficient yellow and orange emission, respectively. Comprehensive structural investigations reveal that larger Stokes shift and longer-wavelength emission of cubic (TMS)2SbCl5 can be attributed to the larger lattice volume and longer Sb⋅⋅⋅Sb distance, which favor sufficient structural aberration freedom at excited states. Together with robust stability, (TMS)2SbCl5 crystal family has been applied as optical waveguide with ultralow loss coefficient of 3.67 ⋅ 10-4 dB µm-1, and shows superior performance in white-light emission and anti-counterfeiting. In short, our study provides a novel and fundamental perspective to structure-property-application relationship of antimony hybrid halides, which will contribute to future rational design of high-performance emissive metal halides.

3.
Front Pediatr ; 11: 1225087, 2023.
Article in English | MEDLINE | ID: mdl-37691771

ABSTRACT

Background: Point-of-care ultrasound (POCUS) can guide umbilical vein catheter placement in real time and monitor catheter tip position, allowing avoidance of severe complications due to catheter malposition. This study aims to explore the effectiveness of POCUS in guiding venous catheter insertion and monitoring complications. Methods: Sixty-eight neonates with ultrasound-guided venous catheter insertion at the Neonatal Department of Dongguan Children's Hospital between December 2020 and February 2022 were included. POCUS was applied to monitor catheter tip location daily until catheter removal. A displacement range exceeding the intersection of the inferior vena cava and right atrium by ±0.5 cm was considered misalignment. Results: Sixty-four neonates had a displaced catheter tip (94.1%, 64/68), with a median displacement distance of 0.4 cm (minimum -0.2 cm, maximum 1.2 cm). Ten neonates had a misalignment (14.7%, 10/68) caused by displacement. Displacement usually occurs within 2-4 days after placement, with displacement rates of 94.1% (64/68), 90.6% (58/64), and 98.3% (59/60) on days 2, 3, and 4, respectively, and could still occur on day 9 post-placement. In addition, misalignment mainly occurs on the second day after placement. During the monitoring process, 58 neonates had catheter tip displacement ≥2 times, resulting in 252 displacement and 22 misalignment incidents. Among them, the catheter tip migrated outward from the inferior vena cava seven times, all of which were removed in time. Ultrasound was used for positioning 486 times, and x-ray was indirectly avoided 486 times. Conclusion: The catheter tip is prone to displacement and misalignment after umbilical vein catheterization, which most commonly occurs on days 2-4. POCUS is recommended for daily monitoring of the tip location during umbilical vein catheterization until catheter removal.

4.
Nat Commun ; 14(1): 4611, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528109

ABSTRACT

Metal halide perovskites have shown great promise as a potential candidate for next-generation solid state lighting and display technologies. However, a generic organic ligand-free and antisolvent-free solution method to fabricate highly efficient full-color perovskite light-emitting diodes has not been realized. Herein, by utilizing porous alumina membranes with ultra-small pore size as templates, we have successfully fabricated crystalline all-inorganic perovskite quantum wire arrays with ultrahigh density and excellent uniformity, using a generic organic ligand-free and anti-solvent-free solution method. The quantum confinement effect, in conjunction with the high light out-coupling efficiency, results in high photoluminescence quantum yield for blue, sky-blue, green and pure-red perovskite quantum wires arrays. Consequently, blue, sky-blue, green and pure-red LED devices with spectrally stable electroluminescence have been successfully fabricated, demonstrating external quantum efficiencies of 12.41%, 16.49%, 26.09% and 9.97%, respectively, after introducing a dual-functional small molecule, which serves as surface passivation and hole transporting layer, and a halide vacancy healing agent.

5.
Nanoscale ; 15(11): 5241-5248, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36790119

ABSTRACT

Although self-trapped exciton (STE) emissions in zero-dimensional metal halides have been intensively investigated, the understanding of the relationship between the coordination geometries of the metal halides and their photophysical properties is still lacking. In this work, we successfully synthesized single crystals, with strong STE emissions, of the bimetallic materials (Bmpip)9[Pb3Br11](ZnBr4)2 (PbZn-Br) and (Bmpip)9[Pb3Br11](MnBr4)2 (PbMn-Br), where Bmpip+ is 1-butyl-1-methyl-piperidinium (C10H22N+), via a facile anti-solvent crystallization strategy. With respect to the monometallic material, (Bmpip)2[PbBr4] (Pb-Br), the introduction of Zn2+ and Mn2+ effectively alters the coordination geometry of the lead bromide polyhedral configuration from a PbBr42- tetrahedron to a Pb3Br115- trimer. As a result, the maximum emission peak of PbZn-Br exhibits an obvious red shift and the full width at half maximum is almost two-fold wider than that of Pb-Br due to stronger electron-phonon coupling. Moreover, due to the intrinsic emission of the Mn2+ ions, an intriguing tunable emission was achieved in PbMn-Br with an impressively high photoluminescence quantum yield of up to 67%. The ultra-stable PbMn-Br single crystals show potential as an ideal down-conversion phosphor for use in UV-pumped white light-emitting diode devices.

6.
ACS Appl Mater Interfaces ; 14(38): 43354-43361, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36123166

ABSTRACT

In view of the toxicity of the Pb element, exploring eco-friendly Pb-free halide perovskites with excellent photoelectric properties is of great research and practical application significance. Herein, copper-based halide perovskite CsCuCl3 and the corresponding Br--substituted sample (CsCuCl2Br) are designed and explored as the catalysts for photocatalytic CO2 reduction for the first time. A facile antisolvent recrystallization process with pre-prepared single crystals as the precursor is employed to controllably synthesize CsCuCl3 and CsCuCl2Br microcrystals (MCs). The electronic structure and charge transfer property analysis by theoretical and experimental investigation reveal that CsCuCl3 possesses a satisfying bandgap (1.92 eV) and conduction band minimum (CBM) to harvest the sunlight and drive the conversion of CO2 to CH4 and CO. The Br- substitution can not only narrow the bandgap but also facilitate the transportation of charge carriers. Thus, a total electron consumption rate of 44.71 µmol g-1 h-1 is achieved for CsCuCl2Br MCs, which is much better than that of same-sized CsPbBr3 microcrystals or even better than many perovskite nanocrystal photocatalysts. This study suggests that Cu-based perovskites can serve as promising candidates for artificial photosynthesis or other photocatalytic applications, which may propose a new thought to construct lead-free, low-cost photocatalysts.

7.
ACS Nano ; 16(5): 8388-8398, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35522604

ABSTRACT

Color tunability of perovskite light-emitting diodes (PeLEDs) by mixed halide compositional engineering is one of the primary intriguing characteristics of PeLEDs. However, mixed halide PeLEDs are often susceptible to color red-shifting caused by halide ion segregation. In this work, strongly quantum-confined perovskite nanowires (QPNWs) made of CsPbBr3 are grown in nanoporous anodic alumina templates using a closed space sublimation process. By tuning the pore size with atomic layer deposition, QPNWs with a diameter of 6.6 to 2.8 nm have been successfully obtained, with continuous tunable photoluminescence emission color from green (512 nm) to pure blue (467 nm). To better understand the photophysics of QPNWs, carrier dynamics and the benefit of alumina passivation are studied and discussed in detail. Eventually, PeLEDs using various diameters of CsPbBr3 QPNWs are successfully fabricated with cyan color (492 nm) PeLEDs, achieving a record high 7.1% external quantum efficiency (EQE) for all CsPbBr3-based cyan color PeLEDs. Sky blue (481 nm) and pure blue (467 nm) PeLEDs have also been successfully demonstrated, respectively. The work here demonstrates a different approach to achieve quantum-confined one-dimensional perovskite structures and color-tunable PeLEDs, particularly blue PeLEDs.

8.
Sci Adv ; 7(34)2021 Aug.
Article in English | MEDLINE | ID: mdl-34417176

ABSTRACT

Although single-source white emissive perovskite has emerged as a class of encouraging light-emitting material, the synthesis of lead-free halide perovskite materials with high luminous efficiency is still challenging. Here, we report a series of zero-dimensional indium-antimony (In/Sb) alloyed halide single crystals, BAPPIn2-2x Sb2x Cl10 (BAPP = C10H28N4, x = 0 to 1), with tunable emission. In BAPPIn1.996Sb0.004Cl10, bright yellow emission with near 100% photoluminescence quantum yield (PLQY) is yielded when it was excited at 320 nm, which turns into bright white-light emission with a PLQY of 44.0% when excited at 365 nm. Combined spectroscopy and theoretical studies reveal that the BAPP4+-associated blue emission and inorganic polyhedron-afforded orange emission function as a perfect pair of complementary colors affording white light in BAPPIn1.996Sb0.004Cl10 Moreover, the interesting afterglow behavior, together with excitation-dependent emission property, makes BAPPIn2-2x Sb2x Cl10 as high-performance anti-counterfeiting/information storage materials.

9.
Nat Commun ; 12(1): 1202, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33619252

ABSTRACT

Halide perovskite single-crystals have recently been widely highlighted to possess high light harvesting capability and superior charge transport behaviour, which further enable their attractive performance in photovoltaics. However, their application in photoelectrochemical cells has not yet been reported. Here, a methylammonium lead bromide MAPbBr3 single-crystal thin film is reported as a photoanode with potential application in photoelectrochemical organic synthesis, 2,5-dimethoxy-2,5-dihydrofuran. Depositing an ultrathin Al2O3 layer is found to effectively passivate perovskite surface defects. Thus, the nearly 5-fold increase in photoelectrochemical performance with the saturated current being increased from 1.2 to 5.5 mA cm-2 is mainly attributed to suppressed trap-assisted recombination for MAPbBr3 single-crystal thin film/Al2O3. In addition, Ti3+-species-rich titanium deposition has been introduced not only as a protective film but also as a catalytic layer to further advance performance and stability. As an encouraging result, the photoelectrochemical performance and stability of MAPbBr3 single-crystal thin film/Al2O3/Ti-based photoanode have been significantly improved for 6 h continuous dimethoxydihydrofuran evolution test with a high Faraday efficiency of 93%.

10.
Nat Commun ; 11(1): 5149, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33051460

ABSTRACT

Akin to single-site homogeneous catalysis, a long sought-after goal is to achieve reaction site precision in heterogeneous catalysis for chemical control over patterns of activity, selectivity and stability. Herein, we report on metal phosphides as a class of material capable of realizing these attributes and unlock their potential in solar-driven CO2 hydrogenation. Selected as an archetype, Ni12P5 affords a structure based upon highly dispersed nickel nanoclusters integrated into a phosphorus lattice that harvest light intensely across the entire solar spectral range. Motivated by its panchromatic absorption and unique linearly bonded nickel-carbonyl-dominated reaction route, Ni12P5 is found to be a photothermal catalyst for the reverse water gas shift reaction, offering a CO production rate of 960 ± 12 mmol gcat-1 h-1, near 100% selectivity and long-term stability. Successful extension of this idea to Co2P analogs implies that metal phosphide materials are poised as a universal platform for high-rate and highly selective photothermal CO2 catalysis.

11.
Angew Chem Int Ed Engl ; 59(47): 20980-20987, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32716141

ABSTRACT

The performances of electron-transport-layer (ETL)-free perovskite solar cells (PSCs) are still inferior to ETL-containing devices. This is mainly due to severe interfacial charge recombination occurring at the transparent conducting oxide (TCO)/perovskite interface, where the photo-injected electrons in the TCO can travel back to recombine with holes in the perovskite layer. Herein, we demonstrate for the first time that a non-annealed, insulating, amorphous metal oxyhydroxide, atomic-scale thin interlayer (ca. 3 nm) between the TCO and perovskite facilitates electron tunneling and suppresses the interfacial charge recombination. This largely reduced the interfacial charge recombination loss and achieved a record efficiency of 21.1 % for n-i-p structured ETL-free PSCs, outperforming their ETL-containing metal oxide counterparts (18.7 %), as well as narrowing the efficiency gap with high-efficiency PSCs employing highly crystalline TiO2 ETLs.

12.
Chem Soc Rev ; 49(2): 354-381, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31859320

ABSTRACT

The power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than those of other thin-film photovoltaic technologies, but the high-efficiency cells are based on complicated device architectures with multiple layers of coating. A promising strategy to commercialize this emerging technology is to simplify the device structure while simultaneously maintaining high-efficiency. Charge transport layers (CTLs) are generally indispensable for achieving high-performance PSCs, but the high cost and possibility of instability hinder the mass production of efficient, stable PSCs in a cost-effective manner. The ambipolar carrier transfer characteristic of perovskite materials makes it possible to fabricate efficient PSCs even in the absence of electron and/or hole transport layers. Encouragingly, the reported PCEs of CTL-free PSCs are already over 20%. However, it is still a mystery about why and how CTL-free devices can work efficiently. Here, we summarize the recent strategies developed to improve the performance of CTL-free PSCs, aiming at strengthening the comprehensive understanding of the fundamental carrier dynamics, heterojunction merits and device physics behind these mysteriously simple yet efficient devices. This review sheds light on identifying the limiting and determining factors in achieving high-efficiency CTL-free devices, and proposes some empirical charge transport models (e.g. p-type doping of perovskites for HTL-free PSCs, n-type doping of perovskites for ETL-free PSCs, constructing efficient p-n heterojunctions and/or homojunctions at one side/interface or employing perovskite single crystal-based lateral geometry for both HTL and ETL-free PSCs, etc.) that are useful to further improve device performance. In addition, an insightful perspective for the future design and commercial development of large-scale, efficient and stable optoelectronic devices by employing carbon electrodes is provided.

13.
Angew Chem Int Ed Engl ; 58(43): 15435-15440, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31448499

ABSTRACT

Low-dimensional lead halide perovskite materials recently have drawn much attention owing to the intriguing broadband emissions; however, the toxicity of lead will hinder their future development. Now, a lead-free (C4 H14 N2 )2 In2 Br10 single crystal with a unique zero-dimensional (0D) structure constituted by [InBr6 ]3- octahedral and [InBr4 ]- tetrahedral units is described. The single crystal exhibits broadband photoluminescence (PL) that spans almost the whole visible spectrum with a lifetime of 3.2 µs. Computational and experimental studies unveil that an excited-state structural distortion in [InBr6 ]3- octahedral units enables the formation of intrinsic self-trapped excitons (STEs) and thus contributing the broad emission. Furthermore, femtosecond transient absorption (fs-TA) measurement reveals that the ultrafast STEs formation together with an efficient intersystem crossing has made a significant contribution to the long-lived and broad STE-based emission behavior.

14.
J Am Chem Soc ; 141(34): 13434-13441, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31378058

ABSTRACT

Heterojunction engineering has played an indispensable role in the exploitation of innovative artificial materials with exceptional properties and has consequently triggered a new revolution in achieving high-performance optoelectronic devices. Herein, an intriguing halide perovskite (PVK) and metal dichalcogenide (MD) heterojunction, i.e., a lead-free Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet hybrid, was fabricated in situ for the first time. Comprehensive investigations with experimental characterizations and theoretical calculations demonstrate that cosharing of the Sn atom enables intimate contact in the Cs2SnI6/SnS2 hybrid together with a type II band alignment structure. Additionally, ultrafast carrier separation between SnS2 and Cs2SnI6 has been observed in the Cs2SnI6/SnS2 hybrid by transient absorption measurements, which efficiently prolongs the lifetime of the photogenerated electrons in SnS2 (from 1290 to 3080 ps). The resultant spatial charge separation in the Cs2SnI6/SnS2 hybrid evidenced by Kelvin probe force microscopy (KPFM) significantly boosts the photocatalytic activity toward CO2 reduction and the photoelectrochemical performance, with 5.4-fold and 10.6-fold enhancements compared with unadorned SnS2. This work provides a facile and effective method for the in situ preparation of PVK-MD heterojunctions, which may significantly stimulate the synthesis of various perovskite-based hybrid materials and their further optoelectronic applications.

15.
Nanoscale ; 11(12): 5180-5187, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30843576

ABSTRACT

The development of an all-inorganic lead-free perovskite nanocrystal is of crucial importance to solve the instability and lead toxicity of organic-inorganic lead hybrid perovskites. Herein, single-layered Cs4CuSb2Cl12 nanocrystals (NCs) with a narrow band gap of 1.6 eV were prepared for the first time via an ultrasonic exfoliation technique. This powerful top-down method was further generalized to synthesize a class of lead-free perovskite (Cs3Bi2X9 and Cs3Sb2X9) NCs. The experimental and theoretical studies revealed that not only inter-layer van der Waals forces but also in-plane chemical bonds played a critical role in the exfoliation process. Specifically, smaller uniform-sized NCs were observed for Cs4CuSb2Cl12 (∼3 nm) as compared to those for Cs3Sb2Cl9 (∼20 nm) although both Cs4CuSb2Cl12 and Cs3Sb2Cl9 exhibited a similar exfoliation energy (∼0.310 J m-2). This can be ascribed to the weaker in-plane chemical bonds of Cu-Cl (2.808 Å) and Sb-Cl (2.924 Å) in Cs4CuSb2Cl12 than the uniform Cl-Sb bond (2.69 Å) in Cs3Sb2Cl9 that allow for an easier exfoliation process. In addition, exfoliation of the Cs4CuSb2Cl12 microcrystal into NCs results in an indirect-to-direct bandgap transition and a reduced electron effective mass, which provides a rapid and steady photoelectrochemical response, demonstrating that Cs4CuSb2Cl12 NCs are a promising candidate for optoelectronic applications.

16.
Small ; 15(16): e1900606, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30913374

ABSTRACT

Ordered 1D metal oxide structure is desirable in thin film solar cells owing to its excellent charge collection capability. However, the electron transfer in 1D electron transporting layer (ETL)-based devices is still limited to a submicrometer-long pathway that is vertical to the substrate. Here, an innovative closely packed rutile TiO2 nanowire (CRTNW) network parallel to the facet of fluorine-doped tin oxide (FTO) substrate is reported, which can serve as a 1D nanoscale electron transport pathway for efficient perovskite solar cells (PSCs). The PSC constructed using newly prepared CRTNW ETL achieves an impressive power conversion efficiency of 21.10%, which can be attributed to the facilitated electron extraction induced by the favorable junctions formed at FTO/ETL and ETL/perovskite interfaces and also the suppressed charge recombination originating from improved perovskite morphology with large grains, flat surface, and good surface coverage. The bifacial contact junctions engineering also enables large-area device fabrication. The PSC with 1 cm2 aperture yields an efficiency of 19.50% under one sun illumination. This work highlights the significance of controlling the orientation and packing density of the ordered 1D oxide nanostructured thin films for highly efficient optoelectronic devices in a large-scale manner.

17.
Angew Chem Int Ed Engl ; 58(16): 5277-5281, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30788885

ABSTRACT

Low-dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead-free zero-dimensional (0D) indium-based perovskite (Cs2 InBr5 ⋅H2 O) single crystal that is red-luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self-trapping excitons (STEs) that result from an excited-state structural deformation. More importantly, the in situ transformation between hydrated Cs2 InBr5 ⋅H2 O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water-sensor in humidity detection or the detection of traces of water in organic solvents.

18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 49(5): 712-715, 2018 Sep.
Article in Chinese | MEDLINE | ID: mdl-30378331

ABSTRACT

OBJECTIVE: To study the protective effects of astaxanthin liposome (Asx-lipo) on photodamage by UVB in mice skin. METHODS: 40 C57BL/6J mice were randomly divided into four groups: The blank group (no irradiation, no drug use), model group (UVB light injury group, no drug use), control group (irradiation + astaxanthin), experimental group (irradiation + astaxanthin liposome), each group with 10 mice. Each group was given the corresponding light (the radiation intensity was 2 mW·cm2, the time of irradiation was 60 s, 1 times a day for the first 5 days, and 1 times every other day for the next 9 days, 10 times in a total of 2 weeks.) and drug intervention (topically treated with 4 mL 0.2‰ astaxanthin or 4 mL 0.2‰ Asx-lipo 10 min before the irradiation) for two weeks. After that, samples were examined by the following indicators: the histological changes of skin, Ki-67, 8-hydroxy-2'-deoxyguanosine(8-OHdG), superoxide dismutase(SOD) activities and serum matrix metalloproteinase-13 (MMP-13). RESULTS: HE staining the model group and the control group showed that the dermis became thin, the dermal collagen fibers were long and thin, and the arrangement was loose and disordered. Compared with the blank group, the expression of Ki-67, MMP-13 and 8-OHdG increased and SOD activity decreased, and the differences were statistically significant (P<0.05). Compared with the model group, the pathological changes of skin tissues in the experimental group were significantly improved, with decreased expressions of Ki-67, MMP-13 and 8-OHdG and increased SOD activity, and the differences were statistically significant (P<0.05). CONCLUSION: The photodamage of mice skin can be improved by topical Asx-lipo. The mechanism may be related to the strong antioxidation of Asx-lipo.


Subject(s)
Antioxidants/pharmacology , Liposomes , Skin/drug effects , Skin/radiation effects , 8-Hydroxy-2'-Deoxyguanosine , Animals , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Ki-67 Antigen/metabolism , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Inbred C57BL , Random Allocation , Skin/pathology , Skin Aging/drug effects , Superoxide Dismutase/metabolism , Xanthophylls/pharmacology
19.
ACS Appl Mater Interfaces ; 10(49): 42301-42309, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30427177

ABSTRACT

Though coating CsPbBr3 nanocrystal (NC) with an outer layer has been regarded as an effective strategy to address its instability issues, deep investigations into the electronic interaction between CsPbBr3 NC and coating layer have yet to be conducted. In this study, the dynamics of hot carrier and charge carrier of CsPbBr3 nanocrystal with various MO2 (M = Si, Ti, Sn) coating layers have been comprehensively studied. Combined transient optical characterizations (time-resolved photoluminescence and ultrafast transient absorption) and photoelectrochemical measurements reveal that coating with insulating SiO2 accelerates the hot carrier relaxation and enhances the radiative recombination by passivating surface traps, whereas efficient charge-carrier separation and extraction are observed after coating with SnO2 and TiO2. The electron injection from CsPbBr3 NC to SnO2 (1.14 × 108 s-1) is 2-fold faster than to TiO2 (5.4 × 107 s-1) owing to the lower conduction band edge and the higher electron mobility of SnO2. Particularly, the first time fabricated CsPbBr3 NC/SnO2 composite exhibits superior stability against UV light and moisture, as well as the best photocurrent response in this study. This work has implied that rational design of the coating layer for perovskite NC can not only improve the stability but also tailor the electronic and optoelectronic properties for various applications.

20.
Sci Rep ; 6: 19077, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26752008

ABSTRACT

In this study, a series of injectable thermoreversible and thermogelling PDLLA-PEG-PDLLA copolymers were developed and a systematic evaluation of the thermogelling system both in vitro and in vivo was performed. The aqueous PDLLA-PEG-PDLLA solutions above a critical gel concentration could transform into hydrogel spontaneously within 2 minutes around the body temperature in vitro or in vivo. Modulating the molecular weight, block length and polymer concentration could adjust the sol-gel transition behavior and the mechanical properties of the hydrogels. The gelation was thermally reversible due to the physical interaction of copolymer micelles and no crystallization formed during the gelation. Little cytotoxicity and hemolysis of this polymer was found, and the inflammatory response after injecting the hydrogel to small-animal was acceptable. In vitro and in vivo degradation experiments illustrated that the physical hydrogel could retain its integrity as long as several weeks and eventually be degraded by hydrolysis. A rat model of sidewall defect-bowel abrasion was employed, and a significant reduction of post-operative adhesion has been found in the group of PDLLA-PEG-PDLLA hydrogel-treated, compared with untreated control group and commercial hyaluronic acid (HA) anti-adhesion hydrogel group. As such, this PDLLA-PEG-PDLLA hydrogel might be a promising candidate of injectable biomaterial for medical applications.


Subject(s)
Hydrogels/chemistry , Hydrogels/chemical synthesis , Polyesters/chemistry , Polyesters/chemical synthesis , Polyethylene Glycols/chemistry , Polyethylene Glycols/chemical synthesis , Temperature , Animals , Biocompatible Materials/pharmacology , Disease Models, Animal , Female , Injections, Subcutaneous , Mice, Inbred BALB C , Micelles , Peritoneum/drug effects , Peritoneum/pathology , Phase Transition , Rats, Sprague-Dawley , Rheology , Tissue Adhesions/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...