Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Res ; 257: 121709, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728781

ABSTRACT

The comprehensive understanding of the occurrence of benzotriazole UV stabilizers (BZT-UVs) in environmental surface water is imperative due to their widespread application and potential aquatic toxicity. We conducted an analysis of 13 traditional BZT-UVs in surface water samples collected from Taihu Lake (TL, n = 23) and Qiantang River (QR, n = 22) in China. The results revealed that 5­chloro-2-(3,5-di-tertbutyl-2-hydroxyphenyl)-benzotriazole (UV-327) was consistently the predominant BZT-UV in water samples from TL (mean 16 ng/L; detection frequency 96 %) and QR (14 ng/L; 91 %). Furthermore, we developed a characteristic fragment ion-based strategy to screen and identify unknown BZT-UVs in collected surface water, utilizing a high-resolution mass spectrometer. A total of seven novel BZT-UVs were discovered in water samples, and their chemical structures were proposed. Four of these novel BZT-UVs were further confirmed with standards provided by industrial manufacturers. Semi-quantitative analysis revealed that among discovered novel BZT-UVs, 2-(2­hydroxy-3­tert­butyl­5-methylphenyl)-benzotriazole was consistently the predominant novel BZT-UV in TL (mean 4.1 ng/L, detection frequency 70 %) and QR (2.8 ng/L, 77 %) water. In TL water, the second predominant novel BZT-UV was 2-(3-allyl-2­hydroxy-5-methylphenyl)-2H-benzotriazole (mean 3.9 ng/L,

Subject(s)
Triazoles , Water Pollutants, Chemical , Triazoles/chemistry , Water Pollutants, Chemical/chemistry , China , Lakes/chemistry , Ultraviolet Rays , Rivers/chemistry , Environmental Monitoring
2.
Environ Res ; 251(Pt 2): 118750, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38522739

ABSTRACT

Benzothiazole (BTH), benzotriazole (BTR), and their respective derivatives (BTHs and BTRs) are emerging environmental pollutants with widespread human exposure and oncogenic potential. Studies have demonstrated adverse effects of exposure to certain BTHs and BTRs on the respiratory system. However, no study has examined the associations between exposure to BTHs and BTRs and lung cancer risk. We aimed to examine the associations between urinary concentrations of BTHs and BTRs and the risk of lung cancer in the general population from Quzhou, China. We conducted a nested case-control study in an ongoing prospective Quzhou Environmental Exposure and Human Health (QEEHH) cohort, involving 20, 694 participants who provided urine samples during April 2019-July 2020. With monthly follow-up until November 2022, 212 lung cancer cases were recruited and 1:1 matched with healthy controls based on age and sex. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer risk associated with urinary BTHs and BTRs concentrations using conditional logistic regression models after controlling for potential covariates. We also examined effect modification by several covariates, including sex, socioeconomic status, smoking status, alcohol consumption, and dietary habit. Creatinine-corrected urinary BTH and 2-hydroxy-benzothiazole (2-OH-BTH) levels were significantly associated with the risk of lung cancer, after adjusting for a variety of covariates. Participants in the highest quartile of BTH had a 95% higher risk of lung cancer, compared with those in the lowest quartile (adjusted OR = 1.95, 95% CI: 1.08-3.49; p for trend = 0.01). Participants with higher levels of urinary 2-OH-BTH had an 83% higher risk of lung cancer than those with lower levels (adjusted OR = 1.83, 95% CI: 1.16-2.88; p for trend = 0.01). Exposure to elevated levels of BTH and 2-OH-BTH may be associated with an increased risk of lung cancer. These associations were not modified by socio-demographic characteristics.


Subject(s)
Benzothiazoles , Lung Neoplasms , Triazoles , Humans , Case-Control Studies , Lung Neoplasms/urine , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Triazoles/urine , Male , Middle Aged , Female , Benzothiazoles/urine , Aged , China/epidemiology , Environmental Exposure , Adult , Environmental Pollutants/urine , Prospective Studies
3.
Sci Total Environ ; 915: 170031, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38220002

ABSTRACT

Exposure to endocrine-disrupting chemicals (EDCs) has been linked to various immune deficiency disorders, including autoimmune diseases like Sjögren Syndrome (SjS). However, the detrimental effects of exposure to EDCs, including bisphenols, parabens, and triclosan (TCS), on SjS have been inadequately documented. Thus, we conducted a cross-sectional study that included both healthy individuals (controls) and patients with SjS (cases). We assessed serum concentrations of bisphenol A (BPA), bisphenol S (BPS), methyl parabens (MeP), ethyl parabens (EtP), and TCS. The relationship between the five EDCs levels and the risk of SjS was also explored. Additionally, we conducted an in-depth analysis of the collective influence of these EDCs mixtures on SjS, employing a weighted quantile sum regression model. Out of the five EDCs analyzed, EtP displayed the highest mean concentration (2.80 ng/mL), followed by BPA (2.66 ng/mL) and MeP (1.99 ng/mL), with TCS registering the lowest level (0.36 ng/mL). Notably, BPS exposure was significantly positively associated with the risk of being diagnosed with SjS (with an odds ratio [OR] of 1.17, p = 0.042). No statistically significant associations with SjS were observed for BPA, MeP, EtP, and TCS (p > 0.05). And we did not observe any significant effects of the EDCs mixture on SjS. To the best of our knowledge, this study is the first to suggest that BPS may potentially increase the risk of SjS. Although no significant effects were observed between other EDCs and SjS risk, we cannot disregard the potential harm of EDCs due to their non-monotonic dose response.


Subject(s)
Endocrine Disruptors , Phenols , Sjogren's Syndrome , Sulfones , Triclosan , Humans , Triclosan/analysis , Parabens/analysis , Cross-Sectional Studies , Benzhydryl Compounds/analysis , China , Endocrine Disruptors/analysis
4.
Environ Pollut ; 331(Pt 1): 121941, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37263569

ABSTRACT

Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers due to their excellent properties. The interference of OPEs on immune function has been proven, but the epidemiological data on OPEs exposure to related immune function diseases, such as sjögren syndrome (SjS), is limited. In cross-sectional study, 283 serum samples were collected from healthy individuals (n = 145) and patients with SjS (n = 138) in Hangzhou, China. Eight OPEs, triethyl phosphate (TEP), tributyl phosphate (TBP), tris (2-chloroethyl) phosphine (TCEP), triphenyl phosphate (TPHP), tri (1-chloro-2-propyl) phosphate (TCIPP), 2-ethylhexyldi-phenyl phosphate (EHDPP), tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), and tri (2-butoxyethyl) phosphate (TBOEP), were frequently measured in serum samples. In addition, we explored the associations between the serum OPEs concentration and the risk of SjS. Results showed that TEP (mean controls 2.17 and cases 3.63 ng/mL) was the most abundant OPEs in the serum samples of the control and case groups, followed by TCIPP (mean controls 0.54 and cases 0.78 ng/mL). Serum TEP, TPHP, and EHDPP concentrations were positively correlated with SjS [odds ratio (OR): 1.97, 1.96, and 2.42, respectively; 95% confidence interval (CI):1.34-2.89, 1.34-2.87, and 1.34-2.87, respectively] in the adjusted model, and a negative correlation of TBP concentrations with SjS in the adjusted model (OR: 0.35, 95% CI: 0.17-0.70) was observed. Compared with the lowest quartile concentrations, the ORs of SjS at the highest quartile concentrations of TEP (OR: 4.93, 95% CI: 2.24-10.82) and TPHP (OR: 4.75, 95% CI:1.89-11.94) were significantly higher. This study suggests that human exposure to OPEs may increase the risk of SjS.


Subject(s)
Flame Retardants , Sjogren's Syndrome , Humans , Environmental Monitoring/methods , Sjogren's Syndrome/epidemiology , Cross-Sectional Studies , Esters , Organophosphates , Phosphates , Flame Retardants/analysis , China/epidemiology
5.
Environ Sci Pollut Res Int ; 30(24): 66186-66194, 2023 May.
Article in English | MEDLINE | ID: mdl-37097579

ABSTRACT

Parabens are a family of endocrine-disrupting chemicals. Environmental estrogens may play a vital role in the development of lung cancer. To date, the association between parabens and lung cancer is unknown. Based on the 189 cases and 198 controls recruited between 2018 and 2021 in Quzhou, China, we measured 5 urinary parabens concentrations and examined the association between urinary concentrations of parabens and lung cancer risk. Cases showed significantly higher median concentrations of methyl-paraben (MeP) (2.1 versus 1.8 ng/mL), ethyl-paraben (0.98 versus 0.66 ng/mL), propyl-paraben (PrP) (2.2 versus 1.4 ng/mL), and butyl-paraben (0.33 versus 0.16 ng/mL) than controls. The detection rates of benzyl-paraben were only 8 and 6% in the control and case groups, respectively. Therefore, the compound was not considered in the further analysis. The significant correlation between urinary concentrations of PrP and the risk of lung cancer (odds ratio (OR)adjusted = 2.22, 95% confidence interval (CI): 1.76, 2.75; Ptrend < 0.001) was identified in the adjusted model. In the stratification analysis, we found that urinary concentrations of MeP were significantly associated with lung cancer risk (OR = 1.16, 95% CI: 1.01, 1.27 for the highest quartile group). Besides, comparing the second, third, and fourth quartile groups with the lowest group of PrP, we also observed urinary PrP concentrations associated with lung cancer risk, with the adjusted OR of 1.52 (95% CI: 1.29, 1.65, Ptrend = 0.007), 1.39 (95% CI: 1.15, 1.60, Ptrend = 0.010), and 1.85 (95% CI: 1.53, 2.30, Ptrend = 0.001), respectively. MeP and PrP exposure, reflected in urinary concentrations of parabens, may be positively associated with the risk of lung cancer in adults.


Subject(s)
Environmental Pollutants , Lung Neoplasms , Adult , Humans , Parabens/analysis , Environmental Pollutants/analysis , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Environmental Exposure/analysis
6.
J Hazard Mater ; 453: 131411, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37062093

ABSTRACT

Engineered nanoparticles (ENPs) can resist heavy metal toxicity in plants, but their coexposure still exhibits toxicity to plants compared to plants without exposure to ENPs and heavy metals. There have been few studies on the toxic mechanism of nano TiO2-heavy metal coexposure and the effect mechanism of nano TiO2 in plants. Thus, transcriptomics and metabolomics were used to study the toxic mechanism of rutile nano TiO2 or TiO2-Cd (rutile nano TiO2 and CdCl2 mixture) on rice (Oryza sativa L.). After 40 days of exposure, the plant height and root dry weight of rice were significantly decreased in the nano TiO2-Cd group compared to the blank group (nano TiO2 and CdCl2 free). After Cd treatment, 423 differentially expressed genes (DEGs) and 16 differential metabolites were identified. Nano TiO2 exposure induced significant regulation of 299 DEGs and 6 metabolites. After nano TiO2-Cd coexposure, 1660 DEGs and 181 differential metabolites were identified. Notably, the EDGs (e.g., chalcone isomerase and hydroxycinnamoyl transferase) and differential metabolites (e.g., chrysin and galangin) demonstrated the disruption of flavonoid biosynthesis in Cd-treated rice. After rice was exposed to nano TiO2, the DEGs were related to ribosome, whereas the differential metabolites were associated with pyruvate metabolism and valine, leucine, and isoleucine biosynthesis. Furthermore, 14 DEGs (e.g., asparaginyl-tRNA synthetase and methionyl-tRNA formyltransferase) involved in aminoacyl-tRNA biosynthetic pathways were significantly upregulated in rice treated with nano TiO2-Cd, in line with the changes in related metabolites (e.g., L-asparagine and 10-formyltetrahydrofolate). Our results show that it is necessary to pay close attention to the toxicity of nano TiO2-Cd coexposure in paddy ecosystems and use ENPs with caution to combat the phytotoxicity of heavy metals.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Cadmium/toxicity , Oryza/metabolism , Transcriptome , Ecosystem , Metals, Heavy/metabolism , Soil Pollutants/metabolism
7.
Sci Total Environ ; 870: 161880, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36731553

ABSTRACT

Pollution of microplastics (MPs) has become a potential threat to Antarctic marine ecosystems. However, the occurrence of MPs in Antarctic krill (Euphausia superba), a keystone species in Antarctic ecosystems, remains unclear. In this study, the abundance and characteristics of MPs were examined in Antarctic krill samples (n = 437) collected from two Antarctic regions. MPs were extracted using an alkali digestion method and analyzed using Fourier-transform infrared spectroscopy. The mean abundance of MPs in Antarctic krill samples from the South Shetland Islands (n = 355) and the South Orkney Islands (n = 82) were 0.29 ± 0.14 and 0.20 ± 0.083 items/individual, respectively. >90 % of MPs found in Antarctic krill were < 150 µm in size. Fibers represented 77 % and 87 % of the MPs in Antarctic krill samples from the South Shetland Islands and the South Orkney Islands, respectively. Black, blue, and red were the predominant colors of MPs in Antarctic krill, accounting for 32 %, 22 %, and 21 % of the total MPs, respectively. Seven polymer compositions were identified for the MPs in Antarctic krill, with the predominance of polyethylene (37 % of total MPs), followed by polypropylene (22 %) and polyester (21 %). To our knowledge, this is the first study to investigate the occurrence of MPs in Antarctic krill samples. The results of this study are important for evaluating the risks of MP exposure in Antarctic krill.


Subject(s)
Euphausiacea , Animals , Euphausiacea/chemistry , Ecosystem , Microplastics , Plastics , Antarctic Regions
8.
J Hazard Mater ; 446: 130715, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36603418

ABSTRACT

Neonicotinoids (NEOs) are widely applied in agricultural lands and are widespread in different environments, accelerating threats to ecosystems and human health. A number of in vitro/in vivo studies have reported adverse effects of NEOs on mammalian health, but the link between NEO exposure and toxic effects on human liver remains unclear. We randomly recruited 201 participants and quantified eight commercialized NEOs in bile. High frequency and concentration of detection indicate low degradation of human liver on NEOs. The main NEOs are nitenpyram and dinotefuran, which contribute to about 86% of the total residual levels of eight NEOs, due to the highest solubility in bile and are not degraded easily in liver. In contrast, imidacloprid and thiacloprid are major compounds in human blood, according to previous studies, suggesting that individual NEOs behave differently in blood and bile distribution. There was no statistical difference in NEO residues between cancer and non-cancer participants and among the different participant demographics (e.g., age, gender, and body mass index). The serum hematological parameters -bile acid, total bilirubin, cholesterol and alkaline phosphatase -were positively correlated with individual NEO concentrations, suggesting that NEO exposure affects liver metabolism and even enterohepatic circulation. The study first examined the NEO residues in human bile and provided new insights into their bioavailability and hepatoxicity risk.


Subject(s)
Chemical and Drug Induced Liver Injury , Insecticides , Animals , Humans , Insecticides/toxicity , Insecticides/analysis , Bile/chemistry , Ecosystem , Neonicotinoids/toxicity , Nitro Compounds , Mammals
9.
Environ Pollut ; 315: 120323, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36191799

ABSTRACT

Elevated urinary bisphenol A (BPA) concentrations have been associated with lung cancer in humans. However, toxicological studies demonstrated that the proliferation of lung cancer cells was inhibited by BPA exposure. Therefore, it is still necessary to determine whether exposure to BPA and other bisphenol analogues (BPs) is associated with lung cancer in humans. In this study, 226 lung cancer patients and 243 controls were randomly recruited. Concentrations of three BPs in human urine were quantified and their relationships with the risk of human lung cancer were evaluated. BPA (mean 1.03 ng/mL, 0.87 µg/g Cre) was the predominant BP in human urine, followed by bisphenol S (BPS) (0.72 ng/mL, 0.53 µg/g Cre) and bisphenol F (0.32 ng/mL, 0.37 µg/g Cre). Significant correlations between creatinine-corrected urinary BPA concentrations and the lung cancer risk (odds ratio (OR) adjusted = 1.28, 95% confidence interval (CI): 1.17, 1.40; Ptrend = 0.04) were found using logistical regression analysis. Creatinine-corrected urinary concentrations of BPS in participants showed significant correlations with lung cancer (ORadjusted = 1.23, 95% CI: 1.04, 1.59; Ptrend = 0.01) in the adjusted model. In the stratification analysis, the significant correlation between urinary creatinine-corrected concentrations of BPA and the risk of lung cancer still observed in male participants (OR = 1.36, 95% CI: 1.09, 1.62, p = 0.040). This study demonstrates that elevated human exposure to BPA and BPS may be associated with the increased lung cancer risk.


Subject(s)
Benzhydryl Compounds , Lung Neoplasms , Adult , Humans , Male , Case-Control Studies , Creatinine , Benzhydryl Compounds/analysis , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology
10.
Environ Pollut ; 307: 119505, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35605832

ABSTRACT

Perfluoroalkyl acids (PFAAs) are widely present in human blood, and have many toxic effects on humans. However, effects of PFAA exposure on the risk of rheumatic immune diseases are limited. In the present study, occurrence of 7 PFAAs, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), perfluorododecanoate (PFDoA), and perfluorotrdecanoate (PFTrA), were measured in serum samples from 156 healthy people (controls) and 156 rheumatoid arthritis (RA) cases living in Hangzhou, China. We also investigated the relationships among cumulative PFAA levels in serum, some immune markers, and the incidence of RA. The results showed that PFOA (6.1 and 11.8 ng/mL) had the highest mean serum concentrations, followed by PFOS (3.2 and 3.4 ng/mL) and PFDA (0.86 and 2.6 ng/mL), in both controls and RA cases. Cumulative exposure to PFOA in the study population were positively correlated with the levels of rheumatoid factors (rs = 0.69, p < 0.01) and anti-cyclic citrullinated peptide antibody (rs = 0.56, p < 0.05). Moreover, significant associations of PFOA concentrations with odds ratios (OR) of RA (OR = 1.998, confidence interval (CI): 1.623, 2.361, p = 0.01) were found by adjusting for various covariates. The crude and adjusted OR for RA was respective 1.385 (95% CI: 1.270, 1.510, p = 0.04) and 1.381 (95% CI: 0.972, 1.658, p = 0.06) for a unit increase in serum PFOS levels, but the adjusted results were not significant. Overall, this case-control study found that human serum PFOA concentrations were positively correlated with RF and ACPA levels.


Subject(s)
Alkanesulfonic Acids , Arthritis, Rheumatoid , Environmental Pollutants , Fluorocarbons , Arthritis, Rheumatoid/epidemiology , Biomarkers , Caprylates , Case-Control Studies , Fluorocarbons/analysis , Humans , Incidence
11.
Sci Total Environ ; 833: 155256, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35427608

ABSTRACT

Microplastics (MPs) are present in global indoor dust, which is an important source of MPs for humans. However, few researchers have investigated differences in the abundance and characteristics of MPs in dust in different indoor environments. In this study, we found that residential apartments (mean: 1174 MPs/g; n = 47) had the highest abundance of MPs in indoor dust samples, followed by offices (896 MPs/g; n = 50), business hotels (843 MPs/g; n = 53), university dormitories (775 MPs/g; n = 48), and university classrooms (209 MPs/g; n = 44). The predominant shape of MPs was fiber in most indoor dust samples. The main size fraction of the MPs in the indoor dust samples from university classrooms and business hotels was 201-500 µm, and it was 501-1000 µm in those from offices, university dormitories, and residential apartments. The main MP polymer in indoor dust samples from business hotels, university dormitories, and residential apartments was polyester, whereas those from offices and university classrooms were mainly polyethylene and polypropylene. We calculated the estimated daily intake (EDI) of MPs through the inhalation of indoor dust, and found that infants (7.4 MPs/kg bw/day) had a higher mean EDI of MPs than toddlers (1.4 MPs/kg bw/day), children (0.49 MPs/kg bw/day), adults (0.23 MPs/kg bw/day), and university students (0.22 MPs/kg bw/day). To the best of our knowledge, we are the first to report differences in MP occurrence in dust samples from different indoor environments, and our findings provide a more accurate understanding of exposure risks of MPs to humans.


Subject(s)
Air Pollution, Indoor , Microplastics , Adult , Air Pollution, Indoor/analysis , Dust/analysis , Environmental Monitoring , Housing , Humans , Infant , Plastics , Polyethylene
SELECTION OF CITATIONS
SEARCH DETAIL
...